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Abstract 

 Radiographic images of the skull and vocal tract of adults from two canid species 

were analyzed for two studies addressing functional issues in animal communication and 

human language. Study 1 tested the hypothesis that vocal tract length scales reliably with 

overall body size such that the acoustic features of vocalizations influenced by vocal tract 

length can serve as honest cues to vocalizer body size. Results supported this hypothesis 

but emphasized that correlations with body size were better for oral cavity length than for 

pharyngeal cavity length. Study 2 tested the hypothesis that laryngeal position can vary in 

response to selection on cranio-facial size and shape. Results supported this hypothesis, 

finding that the larynx occupies a more descended position in the vocal tract of 

individuals with shorter, broader faces compared to longer, narrower faces. The latter 

findings have important implications for the origins and evolution of language in humans. 
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Chapter 1 

Structure-Function Relationships in Body Size Signaling in Animals 

1.1 Competition and Body Size 

Competition for resources and mating opportunities is ubiquitous, and success in 

such competition is often mediated by body size where larger individuals are often more 

successful in competition than smaller individuals (Peters, 1983; Schmidt-Nielson, 1984; 

Harvey, 1990; Alexander, 1996; Fitch, 1997).  

An especially common and important context for competition influenced by body 

size is that which occurs over access to mates. Mate competition is a two-sided coin: 

members of one sex (often males) compete to exclude one another from mating 

(intrasexual competition), and members of this sex also compete for the attention of the 

opposite sex (often females) who sometimes exercise some choice in mating (intersexual 

competition: Darwin, 1859, 1871).  

In both contexts, larger body size may be advantageous because larger males are 

better able to exclude smaller rivals from the mating arena (Clutton-Brock, Harvey, & 

Rudder, 1977); also, females may prefer large-bodied males because large body size 

effectively signals a male’s ability to monopolize a larger share of limited resources in 

order to sustain the costs of growing large. Indeed, there is evidence from a wide variety 

of species in support of both points (Clutton-Brock, Harvey, & Rudder, 1977; Simmons, 

1988; Fischer & Lara, 1999). 
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1.1.1 Signaling Large Body Size 

The universality of competition favoring larger body size has led to Cope’s Law 

which states that, over evolutionary time, species tend towards larger and larger size in a 

race to out-size the competition (LaBarbera, 1989). This pattern of size evolution 

frequently also leads to body size dimorphism with males often larger than females in 

many species, particularly mammals (Fairbairn, 1997).  

 It is also the case that competitors generally prefer to avoid physical confrontation 

because it is energetically expensive and risks injury. Hence, selection on body size sets 

up associated selection to advertise size indirectly. Examples from non-human primates 

include male baboons producing loud ‘wahoo’ calls during dominance displays and when 

competing for access to females (Fischer, Hammerschmidt, Cheney, & Seyfarth, 2002) as 

well as Rhesus Macaques producing aggressive ‘pant-threats’ that are related to body size 

(Fitch, 1997). Among amphibians, many toads produce loud mating calls to attract 

females. Davies and Halliday (1978) found that larger bodied males produce lower 

fundamental frequency mating calls and Howard and Young (1998) found that females 

attend to and prefer callers with a lower dominant frequency. 

1.2 The Anatomy of Vocal Production 

The capacity for indirect vocal advertisement of body size is intimately tied to the 

vocal anatomy of the species, which in most organisms can be modeled as having two 

primary components, a source of sound production and a subsequent filter of that sound 

(Fant, 1960).   

1.2.1 The Acoustic Source 
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For many animals, the source of sound involves the larynx. Tissues in the larynx 

(the vocal folds) vibrate as the air exhaled from the lungs passes across them. The 

resulting voiced sound often (but not always) involves regular oscillations of the vocal 

fold tissues creating a harmonic sound whose base frequency is termed the fundamental 

frequency (and is often abbreviated as F0). The F0 of voiced sounds is the basis for our 

percept of voice pitch.  

 A primary factor determining the rate of vocal fold vibration is the length of the 

vocal folds (Titze, 1989). Longer vocal folds naturally oscillate at lower rates, while 

shorter vocal folds naturally oscillate at higher rates. Common examples of the 

differences in baseline vocal fold oscillation are evidenced in the lower voice pitch of 

adult men compared to women and women compared to children which are ultimately 

traceable to the differences in vocal fold length between them (Titze, 1989).  

1.2.2 The Acoustic Filter 

The second key component of the vocal production system concerns the vocal 

tract cavities above the larynx, which act as acoustic filters of the sounds emanating from 

the laryngeal source (Fant, 1960). As the laryngeally produced sound travels up the vocal 

tract, energy at some frequencies readily propagates because it coincides with the natural 

resonances of the vocal tract cavities, while energy at other frequencies is absorbed by 

the walls of the vocal tract. Those frequencies that pass readily – that coincide with the 

vocal tract resonances – are referred to as the resonant frequencies of the sounds 

(sometimes referred to as ‘formants’ and denoted Fn). An important determinant of the 

resonant frequencies of laryngeally produced sounds is the overall size of the vocal tract 

through which the sounds propagate, and particularly the vocal tract’s length. Larger, 
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longer vocal tracts have lower natural resonance frequencies, while smaller, shorter vocal 

tracts have higher natural resonance frequencies.  

A good metaphor for appreciating these filter effects of the vocal tract concerns 

musical instruments and, in particular, the difference in timbre between large horns, like 

the tuba, and small horns, like the trumpet. The tuba produces very low-frequency sounds 

because it’s large horn holds a relatively large mass of air, which naturally resonates at 

relatively low frequencies. In contrast, the smaller horn of the trumpet holds a relatively 

small mass of air, which naturally resonates at higher frequencies. These frequency 

differences are illustrated dynamically in the action of a single, horned instrument, the 

trombone. As a trombone is played, the player will move the “slide” back and forth to 

modify the timbre (resonant frequencies) of the sound. 

The same logic applies to differences in vocal tract size and length. The vocal 

tract would be equivalent to the tube section of the different horns and is generally 

considered the area from the larynx to the front of the mouth (i.e., the lips and incisor 

teeth). Individuals with longer vocal tracts tend to produce sounds with lower frequency 

resonances, or formants, while those with shorter vocal tracts produce sounds with higher 

frequency resonances. This pattern is evidenced conspicuously in humans in the 

difference in voice timbre between adult men, women, and children.  

 The vocal tract can be further subdivided into two component sections. The oral 

component includes the area between the lips and the back of the throat, while the 

pharyngeal component includes the area beyond this that extends to the position of the 

larynx. In some species, the vocal tract does not contain a pharyngeal component or only 

a relatively small one because the larynx is situated high in the vocal tract near the 
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posterior margin of the oral cavity. However, in some other species, there is a more 

developed pharyngeal cavity because the larynx sits relatively low in the vocal tract. 

Humans are a good example of this with a larynx that occupies a descended position in 

the vocal tract creating a large pharyngeal cavity that is posterior and caudal to the oral 

cavity.  

1.2.3 Is Vocal Signaling of Body Size Honest? 

If competition is mediated by body size, and body size is signaled vocally, then 

there should be reliable cues to a signaler’s size contained in either the F0 or Fn of their 

signals, or both. In fact, there is some supporting evidence but it is often mixed or weaker 

than expected. For example, there is a general pattern of age- and sex-related differences 

in the voice that track gross differences in body size in many species. Immature 

individuals tend to have higher voice pitch and resonances than adults, and adult females 

have higher voice pitch and resonances than adult males. In humans, listeners are 

sensitive to these differences and can use them to discriminate the age and sex of unseen 

speakers (e.g., Coleman, 1976; Smith & Patterson, 2005; Whiteside, 1998) and thus also 

make relative size inferences based on them. However, within age–sex classes the 

relationships are less clear. For example, in humans, there seems to be no consistent 

relationship between voice pitch, in particular, and body size within either men or women 

(e.g., Collins, 2000; van Dommelen & Moxness, 1995; Gonzalez, 2004; Kunzel, 1989; 

Rendall, Kollias, Ney, & Lloyd, 2005; but see also Evans, Neave, & Wakelin, 2006). 

Overall, the bulk of past research shows weak or little evidence of a consistent 

relationship between F0 and body size within age-sex classes. 

1.2.4 Resonants as Better Cues to Body Size 
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 In view of the lack of clear relationships between voice F0 and body size, Fitch 

(1997) proposed that the resonant frequencies of vocalizations might provide more 

accurate cues to body size. His reasoning is that Fn are a direct consequence of the length 

of the vocal tract, which, in turn, should correlate better with overall body size than the 

vocal folds (Fitch, 2000b). 

There is some evidence in support of Fitch’s hypothesis (1997), but, once again, 

the evidence is mixed and often weak or inconsistent. For example, a number of studies 

have demonstrated significant relationships between body size and either vocal tract 

length or the resonant frequencies of vocalizations. However, once again, many studies 

have involved collapsing data across age and sex classes. Hence, they have confirmed 

that males of many species are larger than females (for reasons outlined earlier) and also 

produce vocalizations with lower Fn (Bennett, 1981; Fitch, 1997; Fitch & Giedd, 1999; 

Charlton, Zhang, & Snyder, 2009; Riede & Fitch, 1999). However, when analyses are 

done within particular age-sex classes, the relationships often break down entirely or are 

significant for only one sex and not the other (Charlton, Zhang, & Snyder, 2009; van 

Dommelen & Moxness, 1995; Rendall et al., 2005). 

Age may also be an important confound to consider  (Bruckert, Lienard, Lacroix, 

Kreutzer, & Leboucher, 2005; Fischer, Hammerschmidt, Cheney, & Seyfarth, 2002; Ey, 

Pfefferle, & Fischer, 2007) because, as individuals age, their bodies grow and so too does 

the length of the vocal tract. Hence, all else equal, older individuals will have longer 

vocal tracts and lower Fn than younger individuals. Taken together, failing to control for 

inherent variation in Fn due to age and sex-related variation in body size risks creating a 
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distorted picture of the extent to which Fn cues to body size may be reliable within any 

particular age-sex class where the relevant pressures of sexual selection are occurring.  

1.3 The Perception of F0 and Fn Cues to Body Size 

! An!important!corollary!of!the!possibility!that!animals!mediate!competition!by!

means!of!vocalizations!that!reliably!advertise!body!size!is!that!perceivers!must!be!

able!to!detect!and!accurately!interpret!such!vocal!cues.!There!is!also!a!substantial!

literature!on!this!topic!that,!once!again,!involves!a!mix!of!outcomes.!

1.3.1 Perception of F0 Cues to Body Size 

 Although the bulk of work suggests that the F0 cues available in vocal signals are 

often not very reliable predictors of body size within age-sex classes, many perceptual 

studies nevertheless find that listeners attend to F0 cues and attempt to use them to gauge 

the body size of signalers (van Dommelen, 1993; Gonzalez, 2003; Rendall, Vokey, & 

Nemeth, 2007; Smith & Patterson, 2005). Further, when more reliable Fn cues to body 

size are juxtaposed with the inherently less reliable cues provided by F0, listeners appear 

to rely primarily on the F0 cues when judging size (Rendall et al., 2007). Why listeners 

do this is unclear but the effect may be due, in part, to the role of F0 in reliably signaling 

sex-based differences between males and females, including body size differences. 

F0 is affected to a large extent by the length of the vocal folds, as outlined earlier. 

However, F0 is also affected by circulating hormones because the vocal folds contain a 

host of androgen receptors. Consequently, F0 may serve as a reliable indicator of 

masculinity (qua testosterone). Several studies confirm that listeners use variation in 

voice F0 when judging the sex and attractiveness of speakers. When voice F0 is 

experimentally lowered, the speaker is rated as more masculine and attractive if their F0 



 

 8!

falls within the frequency range typical of males; but male speakers are rated as more 

feminine and less attractive if their F0 falls within the frequency range typical of females 

(Pisanski & Rendall, 2011). Hence, listeners use of F0 as a cue to body size, where it is 

relatively unreliable, might arise in part because it is a reliable cue of masculinity, which 

in turn may be interpreted as a proxy for large body size, at least in a between-sex context 

as reviewed earlier. 

1.3.2 Perception of Resonance Cues to Body Size 

 In general, resonant frequencies appear to be a more reliable cue to body size than 

fundamental frequency. However, research testing the perceptual salience to listeners of 

more reliable Fn cues to body size has yielded mixed results. Some studies suggest that 

people and non-human animals are able to employ Fn to estimate the size of a speaker 

(Charlton, Reby, & McComb, 2007; van Dommelen & Moxness, 1995; Feinberg, Jones, 

Little, Burt, & Perrett, 2005; Fitch, 2000d; Taylor, Reby, & McComb, 2011). While other 

studies suggest that this ability is limited and is clearest only when the naturally 

confounding cues to size provided by F0 cues are experimentally controlled or minimized 

(Rendall et al., 2007). 

1.4 Implications for human language 

 These issues of reliable body size signaling and its vocal anatomical bases also 

bear importantly on another more specific and long-standing problem in the evolution of 

communication, namely the origins and evolution of language. The connection lies in the 

enigmatic origins of human language and the extent to which it is or is not intimately 

linked to unique features of human vocal anatomy.  
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 The origins and evolution of language are an active area of research but prove 

difficult problems to solve because language leaves few fossil traces. However, one 

important line of argument traces the origins of language to the descended position of the 

larynx in the vocal tract of humans compared to its relatively high position in our primate 

ancestors (Lieberman, 1969, 1993). Indeed, the larynx of a human adult is descended in 

the vocal tract to such a large degree that the length of the pharyngeal cavity nearly 

matches the length of the oral cavity. In most other species, including our closest living 

relative the Common Chimpanzee, the larynx is located near the back of the oral cavity 

with little or no discernible pharyngeal cavity. And this lack of a significant pharyngeal 

cavity is considered a primary reason why non-human animals do not have vocal 

language abilities (Lieberman, 1969, 1993).  

1.4.1 The Phonetic Expansion Hypothesis of Laryngeal Descent 

 Lieberman (1969) argued that the descended position of the larynx in humans was 

key to the emergence of articulate language because it created a large pharyngeal cavity, 

in addition to the oral cavity common to other animals. This development, along with a 

pliable tongue, allows for the production of a wider range of resonant patterns through 

dynamic modification of vocal tract articulators that alter the size and shape of the oral 

and pharyngeal cavities. It is precisely this wider array of resonant patterns that define the 

many different vowels that make up contemporary language systems. Hence, the 

descended larynx is regarded as a keystone adaptation in generating the sound diversity 

that underscores complex language in humans. 

 This hypothesis is wholly reasonable on the surface of it. However, it faces a 

growing number of challenges, not least of which is an explanation of the selective 
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processes that might have initiated the descent of the larynx. Originally, Lieberman 

(1993) proposed that the incremental descent of the larynx would lead to correlated 

incremental increases in the individual’s phonetic abilities. However, research by Boe et 

al. (2007) suggests that the kind of linguistic benefits Lieberman argues derive from a 

descended larynx would only accrue after the larynx had descended a considerable 

degree. Unless one assumes that the human larynx descended ‘all at once’, it is not clear 

what pressures initiated the process of laryngeal descent before there were any 

appreciable linguistic benefits. 

At the same time, recent research shows that a descended larynx is not a uniquely 

human trait. In fact, it characterizes a variety of nonhuman and nonlinguistic species. For 

example, in European Red Deer, the larynx occupies a permanently descended position 

relative to related species and it is also subject to additional dynamic descent during 

vocalization (Fitch & Reby, 2001; Reby & McComb, 2003). The result is a vocal tract of 

approximately 75 centimeters while the Red Deer is vocalizing. Similar phenomena have 

been described for Koalas (Charlton et al., 2011), some species of cats (Weissgruber, 

Forstenpointner, Peters, Kubber-Heiss, & Fitch, 2002), and Elephant Seals (Sanvito, 

Galimberti, & Miller, 2007). Hence, a descended larynx, by itself, is no longer considered 

a necessary requisite for language.  

1.5 Alternatives to the Phonetic Expansion Hypothesis 

1.5.1 Body Size Exaggeration 

 Fitch (1997) proposed that resonant frequencies could serve as reliable cues to 

signaler size. But once perceivers utilize Fn as a cue to body size, Fitch suggested that a 

potential benefit arises for those that are able to vocally exaggerate their size (Krebs & 
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Dawkins, 1984; Fitch, 2010). One means to accomplish such size exaggeration would be 

through dynamic or permanent lowering of the larynx, creating a longer vocal tract with 

lower resonant frequencies that produces an acoustic impression of larger body size. 

 Of course, such deceptive size signaling through ever-increasing laryngeal 

descent must eventually confront the limits of anatomy. The larynx can descend only so 

far and then honesty is restored to the signaling system, in which the largest individuals 

once again have the longest vocal tracts and manifest the lowest Fn (Fitch 1997; 2010). 

Indeed, this process is observed in European Red Deer where dynamic descent of the 

larynx reaches the physical boundary of the sternum (Fitch & Reby, 2001). 

 Fitch has offered this “Size Exaggeration Hypothesis” as an alternative to 

Lieberman’s (1969, 1993) Phonetic Expansion hypothesis for laryngeal descent in 

humans (Fitch, 1997, 2000, 2010). Although the Size Exaggeration Hypothesis is also 

intuitive on the surface, it confronts the problem of receiver skepticism. As noted by 

Maynard-Smith (2004), an individual may be able to gain some short-term term 

advantage in mate competition and mate access by making himself appear larger through 

deceptively low-frequency vocalizations accompanying a descended larynx. However, 

that individual’s actual physical competitive ability has not been materially changed by 

the deception and all parties to such competitive interactions are under selection to act 

adaptively. Hence, one expects that selection operating on receivers favors individuals 

that begin to discount and ignore the altered vocalizations of competitors or potential 

mates so as to avoid being duped and suffering continuing fitness costs.  

1.5.2 Laryngeal Descent Accompanying Cranio-Facial Remodeling 
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 A second alternative to account for laryngeal descent in humans is that it 

represented, at least in the initial stages, an integrated response to selection on other 

aspects of cranio-facial anatomy in evolving humans. In addition to a modified laryngeal 

position, humans are distinct from non-human primate ancestors in having a much more 

globular skull (neurocranium) reflecting a dramatic increase in brain size over the course 

of human evolution and also a flatter facial profile reflecting a substantial reduction in 

facial prognathism from ape and early hominin ancestors (Lieberman, 2008). The results 

of such cranio-facial remodeling are twofold, a dramatic reduction in oral cavity length 

and also a compacting of the skull base region arising from flexion of the skull base in 

response to neurocranial expansion. Either or both pressures may have started the process 

of laryngeal descent to compensate for the shrinking of the vocal tract’s oral cavity. Put 

differently, if there were not some compensatory descent of the larynx, the vocal tract of 

evolving humans would have become very short and disrupted previously adapted 

systems of vocal production and perception already in place to support important aspects 

of social communication (Ghazanfar & Rendall, 2008). 

 In support of this possibility, Laitman and Reidenberg (1988) found a relationship 

between the shape of the basicranium (in particular the Cranial Base Angle) and the 

structure of the vocal anatomy. When the basioccipital bone of the cranial base was 

surgically lowered, the position of the larynx was also lowered. Hence, it seems possible 

that the incremental enlargement of the brain in evolving humans and the corresponding 

enlargement of the basicranium and shrinking of the facial structures, may have forced 

the larynx away from the base of the skull, explaining at least the initial stages of 

laryngeal descent. 
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This hypothesis is difficult to test directly because the laryngeal complex is 

composed of cartilaginous tissues that do not fossilize well (Fitch, 2000); hence, it is 

difficult to establish with certainty the position of the larynx in the vocal tract of different 

hominin species (e.g., see Boe et al. (2002) and Lieberman (2007) for debate on laryngeal 

position in Neanderthals). However, indirect tests may be possible using other species for 

which laryngeal position can be established confidently and compared in cases where 

selection has produced cranio-facial modifications analogous to those that characterized 

human evolution.  

1.6  Outline of Thesis 

The remainder of this thesis contains two empirical chapters specifically designed 

to examine important issues in the two previously presented alternatives to the Phonetic 

Expansion Hypothesis. Both Fitch’s Body Size Exaggeration Hypothesis and the 

hypothesis based around cranio-facial re-modeling address  the same phenomenon, the 

descended position of the larynx in humans. However, neither of these alternative 

theories have been properly tested; therefore, the research presented here is designed to 

analyze important issues in laryngeal descent by focusing both on size signaling and on 

the effects of cranio-facial form. Chapter 2 attempts a direct test of Fitch’s hypothesis 

that resonant frequencies should provide reliable cues to body size via their connection to 

overall vocal tract length. The hypothesis is tested using morphometric data collected 

from two different canine species: the Portuguese Water Dog and Russian Silver Fox. For 

both species, the data involve direct measures of body size and measures of vocal tract 

length obtained from radiographic images of the upper body and head. Chapter 3 

provides an indirect test of the hypothesis that laryngeal descent in humans may have 
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been due, at least in part, to changes in cranio-facial anatomy. The hypothesis is tested 

using the Portuguese Water Dog sample which includes individuals exemplifying cranio-

facial variation analogous to the cranial and facial size and shape modifications that 

occurred in human evolution. This sample is studied for evidence that laryngeal position 

in the dogs is sensitive to changes in cranio-facial size and shape as hypothesized for 

evolving hominins. Finally, Chapter 4 reviews the major findings and conclusions and 

considers some potential shortcomings of the work and possible future directions.  
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Chapter 2 

Radiographic Analysis of Vocal Tract Length and its Relation to Overall Body Size 

in Two Canid Species 

2.1 Introduction 

 Body size is a general feature of organismal biology with broad behavioral 

significance. In many species, successful competition for food, other resources or mating 

opportunities is determined in part by body size. For example, in many mammals, larger 

bodied males can physically dominate rivals to monopolize access to female mates, and 

are sometimes also preferred as mates by females. Thus, larger size in males can be 

favored by both inter- and intra-sexual selection pressures, often resulting in extreme 

sexual dimorphism in size (reviewed in Fairbairn, Blanckenhorn, & Székely, 2007). 

 As direct physical confrontation can be dangerous, it is expected that organisms 

will develop methods of indirectly signaling their size and competitive ability as an 

alternative to direct confrontation. Distinctive vocalizations are often a central part of 

inter- and intra-sexual selection displays. Males of many species produce loud 

vocalizations when competing aggressively with rival males or when courting females 

(e.g., baboons: Fischer et al., 2002; Pfefferle & Fischer, 2006; elephant seals: Sanvito et 

al., 2007; red deer: Fitch & Reby, 2001). These vocal signals play a functional role in 

intimidating rivals and attracting females by providing honest, or exaggerated, acoustic 

cues to body size. Listening males and females may use acoustic cues to assess the 
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caller’s threat as a competitor or their appeal as a potential mate (e.g., Reby & McComb, 

2003; Reby et al., 2005; Charlton, Reby & McComb, 2007; Taylor, Reby, & McComb, 

2010). As a result, a central focus of animal communication research and theorizing is the 

extent to which animal vocal signals convey honest cues to body size (Fitch, 1997; 

Searcy & Nowicki, 2005). 

 While a variety of voice features could be involved in cueing body size, research 

to date has focused on two core elements of voice production and their acoustic 

consequences: 1) voice fundamental frequency (F0), or pitch, which is attributable to the 

rate of vibration of the vocal folds of the larynx; and 2) voice resonances (Fn), which are 

attributable to the filtering action of the cavities of the vocal tract.  

 Voice pitch often differs consistently between males and females, as well as 

between adults and juveniles. These sex and age contrasts also correlate with substantial 

differences in body size (e.g., Inoue, 1988; Titze, 1989; Hammerschmidt & Fischer, 

1998; Fischer et al., 2002; Hammerschmidt et al., 2000; Rendall et al., 2004). Hence, 

there is a general correlation between voice pitch and body size across age-sex classes. 

Older individuals have lower-pitched voices than younger individuals, and, within adults, 

males have lower-pitched voices than females. However, within age-sex classes, such as 

within adult males, or within adult females, the correlation between voice F0 and body 

size is not so reliable (Kunzel, 1989; Hauser, 1993; Masataka, 1994; van Dommelen & 

Moxness, 1995; Appleby & Redpath, 1997; Fitch, 2000; Rendall et al., 2005; Pfefferle & 

Fischer, 2006; Riede, Arcadi, & Owren, 2007; Evans, Neave, Wakelin, & Hamilton, 

2008; Frey & Riede, 2013). 
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 The general unreliability of voice pitch as a cue to body size within age-sex 

classes may be due, in part, to the fact that normative voice pitch is determined by 

mechanical properties of the vocal fold tissues (Chan, Fu, Young, & Tirgunagari, 2007; 

Riede & Titze, 2008; Riede 2010; Riede et al., 2010; Titze, 2011). Vocal fold tissue 

properties, in turn, are influenced by circulating hormones and these may vary 

considerably between individuals independently of differences in body size between them 

(Goldman & Salmon, 1942; Beckford, Rood, Schaid, & Schanbacher, 1985; Jenkins, 

1998; Dabbs & Mallinger, 1999; Evans et al., 2008). Thus, at the level that is most 

relevant to adjudicating aggressive mate competition and mate choice, that is between 

adults of both sexes, cues to body size derived from voice pitch are often not very 

reliable. 

 In view of this complication, a second and more recent focus of research has been 

on voice resonances. Following the source-filter theory of human voice production (Fant, 

1960), voice resonances are a straightforward consequence of the length and cross-

sectional area of the vocal tract (see Taylor & Reby (2010) for a recent review of the 

application of source filter theory to animal signals). Building on this logic, Fitch (1997) 

proposed that voice resonances could be a reliable source of cues to body size, 

particularly more reliable than voice pitch. This hypothesis proposes that voice 

resonances provide honest cues to body size because they are determined by the length of 

the vocal tract, which, in turn, scales predictably with overall body size (see Figure 2.1). 

The pattern of voice resonances should therefore be an honest cue to a signaler’s overall 

size. 
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 There have been a number of tests of Fitch’s hypothesis that have involved a 

variety of species, mostly but not exclusively mammals. A selection of studies and their 

main results are summarized in Table 2.1. A majority of studies have focused on the 

relationship between body size and the pattern of voice resonances. Overall, the results of 

such studies have been generally supportive but they have sometimes also involved 

mixed or weak outcomes. For example, in the first studies, Fitch (1997) reported a very 

strong correlation between voice resonances, or formants, and body size in rhesus 

monkeys, while Riede and Fitch (1999) reported similarly strong correlations between 

voice resonances and body size in domestic dogs. Subsequent studies of other species, 

including humans, baboons, red deer, elephant seals, giant pandas, as well as frogs and 

toads, also reported correlations between voice resonances (or dominant frequency) and 

signaler body size (see Table 2.1). However, in some of these latter studies, the 

relationship between voice resonances and body size was relatively weak or even non-

existent. For example, von Dommelen and Moxness (1995), Bruckert et al. (2005), and 

Rendall et al. (2005) all reported relatively weak correlations between voice acoustics 

and body size in humans, and no significant relationships at all for one or the other sex. 

Likewise, Charlton et al. (2009) reported a relationship between voice resonances and 

body weight in male giant pandas but not in females.   

 At the same time, many of the studies reporting very strong correlations have 

involved small samples, or samples that involved a very heterogeneous mix of subjects. 

For example, Fitch (1997) was based on only 20 rhesus monkeys that ranged in age from 

1 to 9 years and involved both males and females. As a result, the very strong correlations 

reported between voice resonances and body size for this sample involved collapsing the 



 

 19!

data across age-sex classes. The results, therefore, confirm well-established differences in 

body size and voice acoustics between adults and juveniles and between males and 

females, as outlined earlier, but they do not test whether the correlation between voice 

resonances and body size also holds within any of these age-sex classes, particularly 

within adults where the hypothesized sexual selection pressures would apply.  

 Similarly, the study by Riede and Fitch (1999) involved a large sample of dogs 

(n=47) but included individuals from 21 different breeds ranging from some of the 

smallest breeds available (e.g., Dachshund, Pekingese and Shih tzu) to some of the 

largest (e.g., German Shepard, Dobermann and Rottweiler). The dogs spanned more than 

an order of magnitude in body mass (from 2.5 kg up to 50 kg) and they also ranged in age 

from juveniles (0.5 years) to very old individuals (15 years). As a result, the strong 

correlations between voice acoustics and body size in this sample confirm extensive 

breed differences in these traits, but they do not speak to whether body size variation is 

correlated with voice acoustics within any one breed. Pfefferle and Fischer (2006) 

involves a similar sampling confound in using a sample of only 13 baboons of markedly 

different ages (1-28 years old) and both sexes (1 adult male, 7 adult females).  

 Sampling confounds like these also complicate the interpretation of the few more 

challenging studies that have tried to directly address the relationship between body size 

and vocal tract length directly. Fitch and Giedd (1999) undertook a unique MRI study of 

humans to get direct measures of vocal tract length and they reported very strong 

correlations between the length of the human vocal tract and body size, measured in 

terms of height and weight. Here again, though, the sample was extremely heterogeneous, 

involving both males and females ranging in age from 2 to 25 years. Analyses were 
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performed only on the data collapsed across all age ranges and across both sexes. The 

strong correlations that were obtained thus confirm important basic developmental 

differences in human body size and vocal tract anatomy as people mature from infancy 

through adulthood. As humans grow from babies to adults, they get bigger (taller and 

heavier) and their vocal tracts get longer. Unfortunately, analyses were not performed 

within age-sex classes, perhaps possibly because the sample sizes within age-sex classes 

were relatively small. So, it remains unclear whether the more subtle differences in body 

size that occur within adult males or within adult females are also matched by subtle 

differences in vocal tract length within men and women as predicted by Fitch’s 

hypothesis.  

 The only other study we are aware of directly addressing the relationship between 

vocal tract length and body size is Riede and Fitch (1999), mentioned previously. That 

study involved X-ray measures of vocal tract length in domestic dogs in addition to 

measures of body size and voice acoustics. However, as noted earlier, this work involved 

a critical confound in its use of a very wide range of dog breeds spanning more than an 

order of magnitude in body weight. Hence, here too it is not clear whether modest 

differences in body size within adult males (or adult females) of a particular breed, for 

example Rottweilers, are matched by correlated differences in vocal tract length.  

 Overall, then, the logic of Fitch’s hypothesis of voice-based body size cueing is 

compelling and there is some supportive evidence. To date, that evidence concerns 

primarily only acoustic studies comparing the pattern of voice resonances with some 

metric of body size (either height, length or weight), and, as just reviewed, the 

relationships reported have often either been weaker than expected or complicated by 
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sampling confounds. To date, there is no evidence confirming the more direct 

relationship between the length of the vocal tract and overall body size when the sample 

is not confounded by variation in age, sex, or breed. In this chapter, we attempt to fill the 

latter gap using unique radiographic samples of a large number of adult males and 

females belonging to two different canid species. The goal is to systematically test for 

correlated variation in vocal tract length and body size in a large sample where age- and 

sex-variation are controlled, thereby allowing a direct and cleaner test of Fitch’s 

hypothesis.  

2.2 Materials and Methods 

2.2.1 Subjects 

 Two independent samples were used. The first sample involved radiographic 

images of the upper-body and head of a large sample of Portuguese Water Dogs, Canis 

lupus familiaris (PWD). PWD’s were originally bred and utilized by fisherman in the 

Portuguese fishing fleet (Chase, Adler, Miller-Stebbings, & Lark, 1999). The breed 

experienced a catastrophic decline in the first half of the 20th century, and the current 

world stock is traceable to a small founder population of 31 individuals following World 

War II. The breed is the subject of a unique research program (the Georgie Project), in 

which the pedigree of all descendant individuals from the founder population is known 

across 26 subsequent generations. Detailed morphological, physiological, sereological, 

histological, genotypic and life-history data have been collected for a large number of 

individuals in the database allowing detailed genomic studies of many traits (Chase et al., 

2002; Chase et al., 2011). 
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 Radiograph images were made on anesthetized dogs attending veterinary clinics 

for surgical procedures. None were known to have suffered injuries that would affect 

vocal anatomy. Imaging was done in the parasagittal plane and generally in a 

standardized position, with a quarter placed on the imaging table to allow size 

standardization. The radiographic sample involved 547 individuals. However, many 

individuals were omitted because images were of insufficient clarity to allow accurate 

identification of vocal tract landmarks. Many others were omitted because the dogs were 

still intubated from surgery when radiographs were taken, and we feared that the wide-

diameter tubing might distort natural vocal tract proportions. From the remaining sample 

of non-intubated dogs, we selected a balanced set of 60 individuals of each sex. All 

individuals were adults (greater than 2 years). 

 The second sample involved whole body radiographs of 121 Russian Silver 

Foxes, a melanistic variant of the red fox (Vulpes vulpes). Silver foxes have been 

systematically managed and bred for many years in Russia, largely for the commercial 

fur trade. However, since 1959 the foxes have also been selectively bred based on their 

temperament as a means of investigating the process of domestication (Trut, 2001; Trut et 

al., 2006; Kharlamova, Trut, Chase, Kukekova, & Lark, 2010; Kukekova et al, 2011). 

Imaging was done in the parasagittal plane and standardized for all individuals. For each 

individual, two radiographic images were made, one from each side. The sample 

involved a nearly balanced set of 64 females and 57 males.  

2.2.2 Anatomical Measures 

 Multiple measures of body size were made previously and described in Chase et 

al. (2002). Based on that analysis, we selected the length of two long bones (femur and 
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humerus) as good metrics of size. We did not use body weight because of possible 

idiosyncratic differences among individuals in diet, activity, condition, and fat as 

observed in other domestic species (e.g., Rendall et al., 2005). 

 To obtain accurate measures of vocal tract length, we subdivided the vocal tract 

into two components, an anterior (rostral) component corresponding roughly to the oral 

portion of the vocal tract and a posterior (caudal) component corresponding to the non-

oral (or pharyngeal) portion of the vocal tract. The anterior (or rostral) boundary of the 

oral component was defined to be the tips of the upper incisors, which were clearly 

visible on all images. The posterior boundary of the oral cavity is delineated by the hard 

and soft palates, but these were sometimes difficult to identify clearly. The bulla 

tympanica, which, as a bony structure, was clearly visible in all images and is situated 

immediately adjacent to the tempero-mandibular joint, was therefore used as a reliable 

and easily identifiable index of the junction between the oral and pharyngeal components 

of the vocal tract. The posterior (caudal) boundary of the pharyngeal component of the 

vocal tract was defined in two ways using either the basihyoid bone or the dorsal aspect 

of the cricoid cartilage to capture, respectively, its ventral and dorsal aspects. 

 Measures of overall vocal tract length based on the hyoid as the posterior 

boundary were subsequently labeled as VTLH and measures of overall vocal tract length 

based on the cricoid as the posterior boundary were subsequently labeled VTLC. Sample 

radiographs of a PWD and fox are shown in Figures 2.2 and 2.3 with labels illustrating 

the vocal tract landmarks and the distances between them that were used to generate 

measures of overall vocal tract length and of the lengths of the oral and pharyngeal 

components of the vocal tract. PWD and fox images were measured identically with one 
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exception: for the PWD sample, measures of the dorsal aspect of the pharyngeal 

component were taken from the midpoint of the dorsal margin of the cricoid cartilage, 

whereas for the fox sample, the most caudal margin of the cricoid cartilage was used.  

 All measurements were made using NIH Image (version 1.44o) and recorded in 

number of pixels. To evaluate measurement reliability, 10 images were randomly 

selected for remeasurement of each vocal tract dimension with a different set of 10 

images selected for each dimension. This procedure involved remeasuring approximately 

10% of the sample. The difference between original and remeasured values was generally 

very low, averaging 3.42 pixels (s.d.= 4.75) or 1.76%, indicating very good measurement 

reliability.    

2.2.3 Head Position 

 Procedures for making radiographic images were standardized such that the 

animals’ position and posture on the x-ray table were similar for all individuals, with two 

exceptions. One exception concerned the degree of extension or flexion of the head 

(Figure 2.4). The degree to which head extension affects laryngeal position in sedated 

dogs or foxes is unknown but it is known to affect laryngeal position in awake humans 

and in sedated horses (Hellsing, 1989; McCluskie, Franklin, Lane, Temaine, & Allen, 

2008). To evaluate and control for possible effects due to variable head extension, we 

also measured the angle between a line connecting bulla to incisors and a second line 

through the vertebral canal for each individual (Figure 2.2). This angle characterizes the 

degree to which the head was extended or flexed in each image. 

 A second exception concerned rotation (eversion) of the head along its long 

(rostral-caudal) axis. In some cases, an individual’s head was rotated downward into the 
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table because the caudal aspect of the head (at the ears) is wider than the rostral aspect (at 

the nose) such that, in an anesthetized animal, the nose can turn downward toward the 

table. This effect was made obvious by the visibility of both the left and the right bulla in 

some x-ray images. To control for possible influences on vocal tract length calculations 

when an animal’s head was rotated, we measured each vocal tract dimension to both the 

left and the right bulla and averaged the two measures. 

2.3 Results 

2.3.1 General Body Size and Vocal Tract Characteristics 

 Descriptive statistics for body size and vocal tract characteristics for the two 

species are provided in Tables 2.2 and 2.3, and trait correlations are given in Tables 2.4 

and 2.5. For both species, there was significant sexual dimorphism in body size and vocal 

tract dimensions, with males being larger than females. Dimorphism values were 

consistent and similar for all traits and both species, with males being 5-7% larger than 

females. The only deviations from this pattern concerned two vocal tract dimensions in 

the fox sample (Hyoid-Bulla and Cricoid-Bulla) where dimorphism values were nearly 

doubled to 11%.  

 Trait correlations were consistent and similar in the two species and for both 

sexes. In both PWD and fox samples, the two body size traits (femur and humerus length) 

were significantly and strongly correlated with each other in both males and females 

(r=0.72-0.90), as were the two measures of overall vocal tract length (VTLH and VTLC; 

r=0.84-0.96). Both measures of vocal tract length were also significantly correlated with 

both measures of body size for males and females, although the magnitude of the 

correlations was more variable and often smaller (r=0.42-0.71). The constituent 



 

 26!

components of the vocal tract were also significantly correlated with one another in both 

sexes, but the magnitude of the correlations was larger between the two pharyngeal 

component measures (Hyoid-Bulla and Cricoid-Bulla; r=0.52-0.79) than between either 

of these measures and the single oral component measure (Bulla-Incisor; r=0.26-0.37). 

Measures of the constituent components of the vocal tract correlated variably and 

sometimes non-significantly with the two measures of body size. For example, Bulla-

Incisor was significantly and strongly correlated with both femur and humerus length in 

both species (r=0.41-0.75), while the correlation of Hyoid-Bulla and Cricoid-Bulla with 

these body size measures was relatively weak (r=0.28-0.58) and often not significant for 

one or the other sex and sometimes both. 

2.3.2 Effects of Head Position on Vocal Tract Dimensions 

 The degree of head extension (or flexion) varied among images. The variation 

was greater for the PWD sample, where the angle between head and spinal axes ranged 

from 85-164 degrees (Males: M=118.9, s.d.=13.8; Females: M=121.7, s.d.=14.2), while 

for the fox sample this angle ranged from 56-94 degrees (Males: M=71.1, s.d.=7.5; 

Females: M=77.8, s.d.=7.0). In separate bivariate regressions, this angle significantly 

affected measures of Hyoid-Bulla and Cricoid-Bulla for males and Hyoid-Bulla for 

females in the PWD sample, and significantly affected measures of Bulla-Incisor in the 

female fox sample (see Table 2.2 and 2.3 for statistics), although in no case did Head 

Position explain more than 11% of the variation in these vocal tract dimensions. Effects 

were nearly significant for measures of Cricoid-Bulla and VTLH for females in the fox 

sample, but the effects were not significant for the remaining vocal tract dimensions. 
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 To generate unbiased measures of vocal tract dimensions for further analyses of 

their relationships with overall body size, we used the residuals from these bivariate 

regressions. As a precaution, we undertook this procedure for all vocal tract dimensions, 

not just those significantly affected by head position.  

2.3.3 Effects of Body Size on Vocal Tract Dimensions  

 After removing the effects of head position on vocal tract dimensions, the 

influence of body size on these dimensions was tested in separate multiple regressions 

employing humerus and femur length as independent variables. Results are shown in 

Figures 2.5 and 2.6 as well as Tables 2.6 and 2.7. The outcomes were very similar for 

both sexes and across the two species for overall vocal tract length. For males and 

females of both species, body size had a significant influence on both measures of overall 

vocal tract length (VTLH and VTLC), explaining between 29% and 53% of their variation, 

respectively. Effects of body size on constituent components of vocal tract length were 

more variable. For the PWD sample, body size had a significant effect on the length of 

the oral component of the vocal tract (Bulla-Incisor), explaining 33% and 54% of its 

variation in males and females, respectively (see Table 2.6 for statistics). However, body 

size did not significantly influence the length of either measure of the pharyngeal 

component of the vocal tract (Hyoid-Bulla or Cricoid-Bulla).  

 In contrast, in the fox sample, body size had more consistently significant effects 

on the length of the constituent components of the vocal tract (see Table 2.7 for 

statistics). Body size significantly influenced the oral component (Bulla-Incisor) in both 

males and females, and also both pharyngeal components (Hyoid-Bulla and Cricoid-
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Bulla) in males and one of these (Cricoid-Bulla) in females, explaining between 12% and 

34% of the variation in these dimensions. 

2.4 Discussion 

 Our results show a consistent and positive relationship between body size, 

assessed by long bone length, and the length of the vocal tract in adult males and adult 

females of two canid species. This is an important finding. Although a correspondence 

between vocal tract length and broader body dimensions is intuitive and well justified on 

theoretical grounds (Fitch, 1997; Fitch, 2010), empirical tests of the relationships have 

often yielded mixed results and been plagued by critical confounds. As reviewed in the 

Introduction, previous research has helped to establish that variation in vocal tract length 

tracks the relatively large body size differences that exist between age-sex classes (e.g., 

infants versus adults; males versus females). However, prior work has not clearly 

established that vocal tract length necessarily tracks the much smaller degree of variation 

in body size that occurs among individuals within any of these age-sex classes. Here, our 

results are important in showing that vocal tract length does track body size variation in 

large samples of adults of two species where, for both samples, age- and sex-related 

variation in vocal tract and body size dimensions were controlled. These results are some 

of the clearest evidence to date in support of Fitch’s proposal that the vocalizations of 

animals might generally provide accurate cues to body size via the effects of size-related 

variation in vocal tract length on voice acoustics. 

It is important to note that the size-related effects we observed were stronger for 

some components of the vocal tract compared to others. In both the PWD and fox 

samples, the oral component of the vocal tract was strongly influenced by body size (qua 
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long bone length). However, the effects were much weaker and less consistent for the 

pharyngeal component. In the PWD sample, there was no significant influence of body 

size on the length of the pharyngeal component of the vocal tract in either males or 

females. In the fox sample, the effects for the pharyngeal component were relatively 

weak and less consistently significant compared to those for the oral component. These 

outcomes suggest that there might be some independence in the growth of the oral and 

pharygneal components of the vocal tract (Vorperian et al., 2009, 2011) and that 

asymmetry may account for previously reported mixed results.  

Some independence in the growth of the oral and pharyngeal components of the 

vocal tract may be due to differential physiological or developmental constraints. The 

oral component of the vocal tract is completely surrounded by, and indeed in some sense 

is defined by, the bony anatomy of the face and skull. Hence, the size of the oral 

component of the vocal tract is effectively determined by the growth and size of the face 

and skull and will track variation in overall body size to the extent that cranio-facial 

growth programs do. In contrast, the length of the pharyngeal component of the vocal 

tract is determined primarily by the height of the larynx, as the larynx defines the caudal 

boundary of the vocal tract. The height of the larynx (and thus the length of the 

pharyngeal component of the vocal tract) may often be more free to vary independently 

of body size because it is not as systematically defined by, or rigidly attached to, 

surrounding bony anatomy.  

The resting position of the larynx is influenced by the anatomy of pharyngeal and 

extrinsic laryngeal musculature and the hyoid skeleton. The ability to move the larynx 

during vocalization depends on the flexibility of these structures. For example, the 
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ligamentous connection between the larynx and the hyoid skeleton allows for dramatic 

dynamic descent of the larynx in European red deer during vocalization but only 

relatively modest descent in its American relative, the elk (Frey & Riede, 2013). 

Evidence from a variety of other species further confirms the potential for either 

dynamic, or permanent, descent of the larynx in the vocal tract (Fitch & Giedd, 1999; 

Fitch & Reby, 2001; Weissengruber et al., 2002; Nishimura, Mikami, Suzuki, & 

Matsuzawa, 2003; Sanvito et al., 2007; Frey & Riede, 2013).  

This asymmetry in the potential constraints on size-related variation in oral versus 

pharyngeal components of the vocal tract might help to account for some of the mixed or 

weak size-related results reported previously in the literature. For example, there have 

been several previous studies of the relationship between vocal tract length, or voice 

acoustics, and body size in humans. The results have been mixed for many reasons 

already noted. For studies that have focused within a particular age-sex class, such as 

within adult males or within adult females, the results have generally been positive but 

weak: vocal tract length, or more often voice acoustic properties, have been positively but 

weakly related to variation in adult body size (Howard & Young, 1998; Griesbach, 1999; 

Gonzalez, 2004; Rendall et al., 2004; Bruckert et al., 2005). Past interpretations of these 

outcomes have varied. Some authors have emphasized the positive nature of the 

relationship, and interpreted it as confirmation of Fitch’s hypothesis that voice acoustics 

accurately cue signaler body size; while others have emphasized that the relationship is 

surprisingly weak given the logic of the hypothesis and have thus questioned why voice 

acoustics are not, in fact, much more strongly correlated with body size.  
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However, if there can be some independence in the growth and size of the oral and 

pharyngeal components of the vocal tract, then in fact the two outcomes and 

interpretations can be reconciled. Measures of overall vocal tract length, or measures of 

voice acoustics that reflect the filtering effects of the entire vocal tract, may correlate 

with measures of body size, but the correlations might often be weak because the oral and 

pharyngeal components of the vocal tract are not equally well correlated with overall 

body size. Hence, the uncorrelated effects of one component of the vocal tract will then 

blur (and necessarily weaken) correlations due to the other.  

This asymmetry in the extent to which the oral and pharyngeal components of the 

vocal tract track overall body size bears on an additional important point related to 

Fitch’s hypothesis of voice-based body size signaling, namely that it is open to deception. 

As Fitch himself has emphasized, the relative emancipation of laryngeal position in the 

vocal tract opens the door to deceptive body size signaling (Fitch, 1999, 2000, 2010). 

Organisms that can lower their larynx, either dynamically during vocalization, as in red 

deer and some other species, or permanently, as in humans, can thereby create a longer 

vocal tract than they would otherwise be expected to have (Fitch, 1999; Fitch & Giedd, 

1999; Riede & Fitch, 1999; Fitch, 2000b; Fitch & Reby, 2001). As a result, they can 

project in the reduced resonance frequencies of their vocalizations an exaggerated 

impression of their body size. Of course, such body size exaggeration may have 

physiological limits imposed by the anatomy of signalers (Fitch & Reby, 2001; Reby & 

McComb, 2003), or theoretical limits imposed by receiver skepticism (Maynard-Smith & 

Harper, 2004). Importantly, the potential for size deception in this way has been assumed 

to be grounded in the effects of variable laryngeal descent on overall vocal tract length. 
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Our findings highlight the possibility that it could reflect effects linked primarily to the 

pharyngeal component of the vocal tract, as this is the component of the vocal tract 

primarily affected by variable laryngeal position.  

This straightforward inference arising from our results has two important 

implications for theory and research. First, the potential for honest and dishonest 

signaling of body size may exist simultaneously in many species. Acoustic cues 

emanating from the action of one component may provide relatively accurate cues to 

signaler body size, while acoustic cues emanating from the other component might not. 

Hence, it may not always be possible to establish for a given species that vocal signals 

are categorically either ‘honest’ or ‘dishonest’ with respect to body size cueing. Instead, 

it is possible they may often be both. The important corollary is that separating the oral 

versus pharyngeal contributions to the ultimate acoustic output of vocal signals might 

allow distinguishing the co-occurrence of honest and dishonest elements of body size 

signaling in a particular species. Accomplishing this will require a much better 

understanding of the detailed mechanics of vocal production than we currently have for 

most species in order to establish with confidence which aspects of the acoustic output 

reflect the action of the different components of the vocal tract. For example, in humans, 

we have some understanding of the spectral signatures of the front- versus back-cavity 

resonances in certain speech sounds (Stevens, 2000). However, we do not have anything 

like this kind of understanding for most other species.  

Two final caveats bear emphasis. The first is that our results pertain only to the 

physical relationships between vocal tract dimensions and body size. They do not address 

the extent to which the actual vocalizations produced by either species studied necessarily 
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preserve the physical relationships observed. In particular, it is possible that the position 

of the larynx is different in active, behaving animals compared to the anaesthetized 

animals studied, and further, that its position can be modified dynamically during vocal 

production. Such dynamic movement of the larynx has been reported previously for other 

dog breeds as well as several other mammals (Fitch, 2000b). Dynamic movement of the 

larynx while vocalizing would clearly alter the length of the pharyngeal component of the 

vocal tract and it might thus serve to further weaken the already weak and inconsistent 

relationships between pharyngeal cavity length and body size that we observed. 

Alternatively, laryngeal movement might actually serve to introduce a stronger 

relationship with body size and, in this way, increase or restore ‘honesty’ in the cueing of 

body size vis-à-vis the pharyngeal component of the vocal tract as well. 

The second caveat to our results is that head position can affect measures of vocal 

tract length. This is particularly pronounced in the measures of pharyngeal cavity length, 

likely because variable head extension (or flexion) involves stretching (or relaxing) 

muscular attachments to the laryngeal complex, thereby elevating (or lowering) the body 

of the larynx by some degree. It is also unknown whether the degree of larynx elevation 

or lowering is a direct linear relationship with head extension/flexion or if some changes 

in head position affect larynx position to a greater extent than others. This is an important 

factor for researchers to be cognizant of, and attempt to control, in future imaging studies 

examining vocal tract dimensions. It is also important vis-à-vis the natural vocal behavior 

of the species, where variable head extension or flexion may be involved in the 

production of different vocalizations. Altering laryngeal position (or other features of 
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laryngeal action) and thus vocal tract dimensions may influence the extent to which the 

resulting voice cues reliably reflect the caller’s size. 

Our results confirm strong positive relationships between overall vocal tract length 

and linear metrics of body size within both adult males and adult females of two canid 

species. Because the size-related effects of age and sex were controlled in this study, 

these outcomes provide good support for Fitch’s hypothesis of reliable signaling of body 

size via acoustic cues to vocal tract length. At the same time, our results highlight 

potential asymmetries in the extent to which the oral versus pharyngeal components of 

the vocal tract track variation in overall body size. Finally, our results underscore the 

impact that variable head and larynx positions may have both on measurements of vocal 

tract dimensions in anaesthetized animals and the extent to which the vocalizations 

ultimately produced by these animals preserve or distort the baseline physical 

relationships between vocal tract dimensions and body size. 
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Table 2.1: Summary of past studies of relationships between body size, vocal tract length, 
and voice resonances. 

Author(s) Species Relationship* Major Findings 
Bruckert et al. 

(2005) 
Humans C § No correlation between 

Fn and body size. 
Charlton et al. 

(2009) 
Giant pandas 

 
C ! ‡ § Correlation between Fn 

and body weight in males 
but not females. 

Fitch (1997) Rhesus 
macaques 

A, B, C ! ‡ § Correlation between 
body size, vocal tract 
length, and formant 

dispersion. 
Fitch & Giedd 

(1999) 
Humans A ‡ Correlations between 

height, weight and vocal 
tract length. 

Fitch (2000c) Primates and 
carnivores 

A ‡ § Correlation between 
weight and palate length. 

Fitch & Reby 
(2001) 

Red deer B ! Correlation between 
vocal tract length and Fn. 

Gonzalez (2004) Humans C Weak relationship 
between body size and 

Fn. 
Griesbach (1999) Humans C Weak relationship 

between height and Fn. 
Howard & Young 

(1998) 
American toad C § Correlation between 

body size and dominant 
frequency in males. 

Perry, Ohde, & 
Ashmead (2001) 

Humans C !§ Correlation between 
body size and Fn. 

Peters, Baum, 
Peters, & Tonkin-
Leyhausen (2009) 

Various feline 
species 

C ! § || Correlation between 
body weight and mean 
dominant frequency. 

Pfefferle & 
Fischer (2006) 

Hamadryas 
baboon 

C ! ‡ § Correlation between 
body size and formant 

dispersion. 
Pfefferle, West, 
Grinnell, Packer, 
& Fischer (2007) 

Lions C !§ Correlation between 
chest circumference and 

Fn. 
Reby & McComb 

(2003) 
Red Deer C ! § Correlation between 

body weight and lowest 
Fn. 

Rendall et al. 
(2005) 

Humans and 
baboons 

C ! Correlation between 
height and Fn in males 

but not females. 
Riede & Fitch 

(1999) 
Domestic dogs A, B, C ‡ § Correlation between 

body mass, skull length 
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and vocal tract length and 
formant dispersion. 

Sanvito et al. 
(2007) 

Elephant seals A, B, C § Correlation between 
body length and Fn. 

van Dommelen & 
Moxness (1995) 

Humans A, C ! § No correlation between 
body size and Fn. 

Wilczynski, 
Keddy-Hector, & 

Ryan (1992) 

Cricket Frogs C ! Correlation between 
body size and dominant 

frequency. 
* Letters here represent specific relationships identified in Figure 2.1. 
!= small sample size 
‡= data collapsed across age-sex classes or across breeds or subspecies 
§= other methodological issues (e.g., use of body weight as index of size; VTL 
estimated indirectly) 
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Table 2.4: Pearson correlations for body size and vocal tract length variables for 
Portuguese Water Dog sample. 

 Sex Bulla-Incisor Hyoid-
Bulla 

Cricoid-
Bulla VTLH VTLC Femur 

Bulla-
Incisor 

F 
M       

Hyoid-
Bulla 

F 
M 

0.369* 
0.369*      

Cricoid-
Bulla 

F 
M 

0.256* 
0.194 

0.767** 
0.788**     

VTLH 
F 
M 

0.911** 
0.932** 

0.719** 
0.680** 

0.532** 
0.460**    

VTLC 
F 
M 

0.890** 
0.880** 

0.642** 
0.676** 

0.668** 
0.637** 

0.952** 
0.955**   

Femur F 
M 

0.751** 
0.413** 

0.252 
0.239 

0.146 
0.332* 

0.673** 
0.419** 

0.653** 
0.484**  

Humerus 
 

F 
M 

0.710** 
0.572** 

0.217 
0.284* 

0.180 
0.306* 

0.627** 
0.561** 

0.634** 
0.593** 

0.898** 
0.722** 

*p⩽0.05; **p⩽0.001 
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Table 2.5: Pearson correlations for body size and vocal tract length variables for fox 
sample. 

 Sex Bulla-Incisor Hyoid-
Bulla 

Cricoid-
Bulla VTLH VTLC Femur 

Bulla-
Incisor 

F 
M       

Hyoid-
Bulla 

F 
M 

0.116 
0.347*      

Cricoid-
Bulla 

F 
M 

-0.066 
0.234 

0.591** 
0.586**     

VTLH 
F 
M 

0.888** 
0.918** 

0.559** 
0.692** 

0.218 
0.428**    

VTLC 
F 
M 

0.732** 
0.809** 

0.494** 
0.586** 

0.631** 
0.761** 

0.839** 
0.872**   

Femur F 
M 

0.588** 
0.582** 

0.063 
0.385* 

0.275* 
0.530** 

0.519** 
0.612** 

0.645** 
0.710**  

Humerus 
 

F 
M 

0.569** 
0.479** 

0.209 
0.440** 

0.243 
0.579** 

0.572** 
0.556** 

0.608** 
0.670** 

0.797** 
0.766** 

*p⩽0.05; **p⩽0.001 
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Table 2.6: Results of multiple regression tests for effects of body size on overall vocal 
tract length and constituent components of vocal tract length for Portuguese Water Dog 

sample. 

  Effects of Size* 

Vocal Tract 
Measure Sex F-value R² p 

VTLH 

M 11.87 0.294 ⩽0.001 

F 20.62 0.420 ⩽0.001 

VTLC 

M 13.99 0.333 ⩽0.001 

F 21.02 0.429 ⩽0.001 

Bulla-Incisor 
M 13.81 0.326 ⩽0.001 

F 33.53 0.541 ⩽0.001 

Hyoid-Bulla 
M 2.29 0.074 0.111 

F 1.28 0.043 0.285 

Cricoid-Bulla 
M 2.34 0.077 0.106 

F 0.90 0.031 0.413 

* Size is represented by humerus and femur length 
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Table 2.7: Results of multiple regression tests of effects of body size on overall vocal 
tract length and constituent components of vocal tract length for fox sample. 

  Effects of Size* 

Vocal Tract 
Measure Sex F-value R² p 

VTLH 

M 16.61 0.381 ⩽0.001 

F 12.40 0.289 ⩽0.001 

VTLC 

M 29.94 0.526 ⩽0.001 

F 21.74 0.416 ⩽0.001 

Bulla-Incisor 
M 13.63 0.335 ⩽0.001 

F 13.71 0.310 ⩽0.001 

Hyoid-Bulla 
M 6.12 0.185 0.004 

F 2.45 0.074 0.095 

Cricoid-Bulla 
M 13.66 0.336 ⩽0.001 

F 4.26 0.123 0.019 

* Size is represented by humerus and femur length 
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Figure 2.1. Schematic illustrating the various two-way relationships between overall body 
size, the length of the vocal tract, and the resulting pattern of voice acoustic resonances in 

two dogs of different size. The dog on the left is larger than the dog on the right and is 
therefore expected to have a longer vocal tract length and therefore also lower voice 

resonances. Past studies of these relationships have tended to focus on the relationship 
between overall body size and voice acoustics (relationship C) and relatively rarely on 

the relationship between overall body size and vocal tract length (relationship A), or the 
relationship between vocal tract length and voice acoustics (relationship B). 
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Figure 2.2. Radiograph of head and vocal tract of Portuguese Water Dog illustrating 

vocal tract landmarks and distances between them used to evaluate overall vocal tract 
length and the length of constituent components of the vocal tract. 1. Basihyoid; 2. 
Cricoid; 3. Bulla tympanica; 4. Incisors; A. Hyoid-Bulla distance; B. Cricoid-Bulla 

distance; C. Bulla-Incisor distance; D. Spinal axis. 
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a)  

b)  
Figure 2.3. Radiographs of upper body (a) and head and vocal tract regions (b) of fox 
illustrating vocal tract landmarks and distances between them used to evaluate overall 

vocal tract length and the length of constituent components of the vocal tract. Landmarks 
and measurements are the same as those labeled in Figure 2.2. 
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a)  b)  

c)  
Figure 2.4. Radiograph images of Portuguese Water Dogs illustrating variation in the 

degree of head extension and flexion quantified as the angle of deviation from the spinal 
axis. a) 164°; b) 128°; c) 87°. 
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Figure 2.5. Relationships between body size (represented here by humerus length) and 

vocal tract length measurements in the Portuguese Water Dog sample. Vocal tract length 
measurements have been corrected for the effects of head position. 
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Figure 2.6. Relationships between body size (represented here by humerus length) and 

vocal tract length measurements in the fox sample. Vocal tract length measurements have 
been corrected for the effects of head position. 
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Chapter 3 

Variable Laryngeal Position in Domestic Dogs in Response to Modified Cranio-

Facial Dimensions and its Implications for Human Language Evolution  

3.1 Introduction 

 The anatomy of the human vocal tract involves a descended position of the larynx 

relative to its position in the vocal tract of primate ancestors (Lieberman, 1969; Fitch, 

2000). This descended larynx in humans is often attributed supreme importance in the 

evolution of language because it creates a more complex vocal tract configuration. In 

addition to the oral cavity common to non-human primates and other mammals, a 

descended larynx creates an additional, large pharyngeal cavity at the top of the throat 

extending caudally to the laryngeal body itself. This change in the size of the pharyngeal 

cavity is hypothesized to have spurred language by enabling the production of a much 

wider range of speech sounds, especially different vowel sounds (the Phonetic Expansion 

Hypothesis; Lieberman, 1969). The language and speech abilities of prehistoric humans 

are expected to have increased in conjunction with the descent of the larynx and these 

increased language abilities would then feedback and further drive the descent of the 

larynx to its current position in modern humans. Ultimately, then, the emergence of 

language in human prehistory, and its broader role in the evolution of complex societies 

and cultures, is thought to be traceable to the appearance of a descended larynx in the 

fossil record (Lieberman, 1993). 
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 This is an intuitive proposal that enjoys some important empirical support 

(Lieberman, 1969; de Boer, 2010). However, the Phonetic Expansion Hypothesis has 

faced a growing number of problems and challenges. Because the larynx is composed of 

a mixture of cartilage, muscle, and bone, it does not fossilize as well as other areas of the 

skeleton that are composed of purely bone. Therefore, most proposals concerning the 

position of the larynx in ancestral fossils are inferential at best (Boe et al., 2002; 

Lieberman, 2007). 

 Furthermore, there is considerable debate concerning the amount of descent 

required to modify and improve speech abilities. It is possible that some of the 

hypothesized speech advantages of a descended larynx may not accrue until the larynx 

has already descended an appreciable distance (de Boer, 2010). If true, then some other 

pressure must be responsible for triggering the initial descent of the larynx. However, 

there is also research making the opposite point, namely that a descended larynx is not 

required to produce the majority of sounds employed in modern languages (Boe et al., 

2007). Further, many languages make use of only a relatively small number of vowels 

and phonemes, and yet are perfectly functional (Maddieson, 1984). Hence, language 

itself might not have been a sufficient pressure sustaining incremental descent of the 

larynx to its current position.  

 A final concern is that the descended larynx is not unique to humans. Recent 

studies show that several non-linguistic animal species have either a permanently 

descended larynx or have a larynx that descends dynamically when they vocalize (Fitch 

& Reby, 2001; Reby & McComb, 2003; Weissengruber et al., 2002; Sanvito et al., 2007; 

Charlton et al., 2011). Consequently, there are factors other than language influencing 
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laryngeal position and its permanent or dynamic descent in the vocal tract. Taken 

together, these problems suggest that a descended larynx and language may not be 

deterministically related; an alternative explanation seems to be necessary to explain the 

changes in human laryngeal position that occurred following our split from the last 

common ancestor with the great apes.  

 What has not been systematically considered previously is that laryngeal descent 

in humans may have arisen as a by-product of extensive remodeling of the skull and, in 

particular, the face during this period of human evolution. These alterations to the human 

face and skull occurred over an extended period of time in response to a variety of 

selective pressures (e.g., feeding, respiration, locomotion (Lieberman, 1993; Lieberman, 

2008)). The end result was a significantly more globular neurocranium and a dramatically 

shorter face compared to primate ancestors. Without compensatory changes in laryngeal 

position, these dramatic changes in cranio-facial size and shape, particularly alterations in 

snout and oral cavity length, would have produced a dramatically shorter vocal tract; 

thereby potentially compromising co-evolved systems of vocal production and vocal 

perception that were already functional in the communication systems of early hominins. 

 Variants of this by-product hypothesis for laryngeal descent have been mooted 

before (Negus, 1949; Owren, 1996; Nishimura, Mikami, Suzuki, & Matzuzawa, 2006; 

Ghazanfar & Rendall 2008) but never systematically tested. It is, in fact, a difficult 

hypothesis to test directly because, as noted above, the human laryngeal complex does 

not fossilize well and hence its position in fossil material is difficult to establish or infer. 

However, the hypothesis can be tested indirectly by examining variable laryngeal descent 

in conjunction with changing cranio-facial shape in other species. Here, we provide such 
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a test using Portuguese Water Dogs (Canis lupus familiaris; PWD), a breed of domestic 

dog originally bred and utilized by Portuguese fisherman (Chase et al., 1999). The breed 

experienced a catastrophic population decline and recovery in the last century and the 

current world stock is traceable to a founder population of 31 individuals. The PWD is 

the subject of a unique research program (the Georgie Project) that maintains a global 

database of all descendants of the founder population across 26 generations to facilitate 

genomic studies of morphological, physiological, and life-history traits (Chase et al., 

2002; Chase et al., 2011). Notably, managed breeding of the dogs since their recovery has 

involved selection for different facial morphologies, specifically involving a long, 

narrow-faced (dolicocephalic) form and a comparatively short, broad-faced 

(brachycephalic) form. The differences between these two forms approximate the 

changes in cranio-facial form that occurred in human evolutionary history from relatively 

prognathic, long-faced ancestral species (e.g., Sahelanthropus sp.) to the relatively flat 

and broad facial profile of anatomically modern humans (H. s. sapiens). Hence, 

Portuguese Water Dogs offer a natural opportunity to test whether laryngeal position 

responds to global changes in cranio-facial size and shape. 

3.2 Materials and Methods 

3.2.1 Subjects 

 The sample involved radiographic images of the upper-body and head regions of a 

large sample of PWDs. Radiograph images were made on anesthetized dogs attending 

veterinary clinics for surgical procedures. None were known to have suffered injuries that 

would affect vocal anatomy. Imaging was done in the parasagittal plane and generally in 

a standardized position, with a quarter placed on the imaging table to allow size 
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standardization. The radiographic sample involved 547 individuals. However, many 

individuals were omitted because images were of insufficient clarity to allow accurate 

identification of vocal tract landmarks. Many others were omitted because the dogs were 

still intubated from surgery when radiographs were taken, and we feared that the wide-

diameter tubing might distort natural vocal tract proportions. From the remaining sample 

of non-intubated dogs, we selected a balanced set of 55 individuals of each sex for the 

tracheal descent measurements. All individuals were adults (greater than 2 years).    

3.2.2 Anatomical Measures 

 36 measures of skull features were made previously and described in Chase et al. 

(2002). To these measurements was added a measure of snout length, measured from the 

bulla tympanicus to the tip of the upper incisors (Bulla-Incisor distance). A Principal 

Component Analysis was used to reduce the large set of skull measures to a smaller 

number of orthogonal factors of size and shape variation.  

 Definitive identification of laryngeal position involved using the superior margin 

of the trachea as a key landmark identifiable in radiographs. The superior margin of the 

trachea corresponds to the posterior portion of the larynx and serves as an appropriate 

index of the most caudal position of the laryngeal body. The extent to which the larynx 

was descended in the vocal tract was evaluated by assessing its position relative to the 

body of the third vertebrae of the spine. For example, a value of 50% for laryngeal 

descent would correspond to a larynx whose most posterior margin was located mid-way 

along the body of the third vertebrae. A value of 100% would correspond to a larynx 

whose most posterior margin was located at the posterior margin of the third vertebral 
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body. Recording and calculating these measurements involved a four-step process 

detailed in Figure 3.1. 

 All measurements were made using NIH Image (version 1.44o) and recorded in 

number of pixels.  

3.2.3 Head Position 

 Procedures for making radiographic images were standardized such that the 

animals’ position and posture on the x-ray table were similar for all individuals, with two 

exceptions. One exception concerned the degree of extension or flexion of the head along 

the sagittal plane (Figure 3.2). The degree to which head extension affects laryngeal 

position in sedated dogs is unknown but it is known to affect laryngeal position in awake 

humans and in sedated horses (Hellsing, 1989; McCluskie et al., 2008). To evaluate and 

control for possible effects due to variable head extension, we also measured the angle 

between the Bulla-Incisor line, described above, and a second line aligned with the 

vertebral column of each individual (See Figure 3.1). This angle quantifies the degree to 

which the head was extended away from, or flexed toward, the body in each image. 

 A second exception concerned the rotation (eversion) of the head along its long 

(rostral-caudal) axis. In some cases, an individual’s head was rotated downward into the 

table because the caudal aspect of the head (at the ears) is wider than the rostral aspect (at 

the nose) such that, in an anesthetized animal, the nose can naturally turn downward 

toward the table. This effect was made obvious in some x-ray images by the visibility of 

both the left and the right bulla tympanicus. To control for possible influences of an 

animal’s head rotation on the Bulla-Incisor measurements, we measured from both the 

left and the right bulla to the front incisors and averaged the two measurements. 
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3.3 Results 

3.3.1 Effects of Head Position on Larynx Position 

 In the sample, the angle between head and spinal axes ranged from 87-155 

degrees in males (M=118.9, s.d.=13.8) and 85-164 degrees in Females (M=121.7, 

s.d.=14.2). In separate bivariate regressions, this angle significantly affected laryngeal 

descent measures in both males and females (Figure 3.3). Absolute head position 

explained 65% of the variance in male laryngeal descent and 34% of the variance in 

female laryngeal descent. To generate unbiased measures of laryngeal descent for further 

analyses, the unstandardized residuals from these bivariate regressions were utilized. 

3.3.2 Principle Components Analysis 

 Using an eigenvalue cut-off criterion of 1, eight unrotated principal components 

(PCs) were derived for males and six principal components were derived for females. 

Collectively, these components explained 83.493% of the variation in male skull size and 

shape and 82.593% of the variation in female skull size and shape. In both sexes, PC 1 

was strongly correlated with overall body size (males: R2= 0.341; p≤0.001; females: R2= 

0.810; p≤0.001; Figure 3.4), indicating that it was capturing variation in overall skull 

size.  

3.3.3 Variable Laryngeal Descent 

 To test the possibility that laryngeal position might vary with variation in face and 

skull size and shape, a stepwise multiple regression was conducted using the larynx 

position values (after correcting for head position) as the dependent variable and the PCs 

summarizing variable skull and shape as the independent variables. Regressions were run 

separately for each sex. This analysis revealed significant effects of face and skull 
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dimensions on laryngeal position in both males and females. In males, the effects were 

attributable to PC4 (R2= 0.086; p=0.029; Figure 3.5), which was associated with a set of 9 

original face and skull variables (Table 3.3). For females, the effects were attributable to 

PC6 (R2= 0.079; p= 0.045; Figure 3.7), which was associated with a set of 8 original face 

and skull variables (Table 3.4). These effects are illustrated in Figures 3.6 and 3.8. 

3.4 Discussion 

 Results confirm that the largest proportion of variation in cranio-facial dimensions 

in PWD’s was associated with differences in overall body size. This finding is entirely 

sensible in that the skull is comprised of boney structures whose growth programs are 

probably strongly related to developmental programs affecting bone growth generally and 

thus overall body size. Hence, larger-bodied individuals also have larger skulls.  

 More notably, results revealed significant effects of cranio-facial variation on 

larynx position. This effect seems likely to reflect selective breeding of PWD’s 

specifically for different cranio-facial forms including a brachycephalic (broad-faced) 

form and a dolichocephalic (long-faced) form (K. Chase, personal communication). 

These findings deserve further scrutiny and interpretation in light of their potential 

implications for the hypothesis that laryngeal position in the human lineage was likewise 

affected by selection on variation in cranio-facial form. 

 In PWD’s, laryngeal position in males was significantly affected by PC4 which 

was associated with several original variables capturing differences in the length and 

width of the face and skull. Key facial length variables were Mandible Length, Prosthion 

Length, Zygomatic Length, Internasal Length, and the Bulla-to-Incisor measure. In 

addition, Angle 1 was also implicated and positively associated with the other facial 
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length variables, suggesting that the angle of the mid-facial ‘stop’ in PWD’s varies in 

conjunction with growth in facial length. Key facial width variables were Mandible Span, 

Snout Width, and both Upper and Lower Canine Span. In addition, Crest Length and 

Angle 3, which capture some of the variation in neurocranium size, were also implicated 

and positively associated with variation in facial width. Collectively, the set of variables 

significantly associated with variable laryngeal position in males is best characterized as 

a trade-off between facial length and width where facial shortening (and widening) was 

associated with increased laryngeal descent. This outcome is entirely consistent with the 

hypothesis that facial shortening and widening might similarly have affected laryngeal 

position in human evolution. 

Laryngeal position in female PWD’s was significantly influenced by PC6, which 

was associated with several original variables related variously to midfacial regions and 

anterior and posterior regions of the face and skull. Key variables loading together on 

PC6 were Crest Length, Canine Span, Facial Height, Premaxilla and Angle 1. This set of 

variables is difficult to interpret simply but seems to describe dimensions of variation 

associated with anterior and posterior regions of the skull. Also loading together, but 

opposite to the other variables noted, were Zygomatic Length, Cranial Height, and 

Coronoid Span. Together, this set of variables described variation in the mid-facial region 

of the skull. It is difficult to infer a simple dimensional trade-off to explain this set of 

variables that were significantly associated with laryngeal position in females. However, 

one interpretation is that it represents a tradeoff between the size of anterior and posterior 

regions of the face and skull compared to mid-facial regions with greater larygneal 

descent associated with reduction in the front and rear of the face and skull.  
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Overall, these findings have important implications for the evolution of laryngeal 

descent in humans. They provide support for the hypothesis that changes in cranio-facial 

form occurring in the human lineage – specifically involving retraction and widening of 

the face and expansion of the neurocranium (Lieberman, 2008) – may similarly have 

been associated with changes in laryngeal position and favored increased laryngeal 

descent. The results for PWDs certainly confirm that laryngeal position is malleable in 

response to selection on variable cranio-facial form.  

One explanation for the linked changes observed in laryngeal position and -facial 

form in PWD’s (and possibly humans) could simply be that the developmental programs 

for laryngeal and cranio-facial anatomy are functionally integrated. Certainly, there is 

considerable evidence for integration of a broad array of other organismal systems (Wake 

& Roth, 1989). In this case, the critical functional needs of breathing, swallowing, and 

feeding might select for developmental integration of face, skull and connected laryngeal 

structures that must be coordinated in the service of these activities. Hence, laryngeal 

position may respond to changes in face and skull size in order to support continued 

coordinated functioning of all these structures to sustain of breathing, swallowing, and 

feeding abilities.  

It is possible that functions associated with vocal communication also contribute 

to such integration. For example, in many primate species, the resonant frequencies, or 

formants, of vocalizations serve a variety of important social functions, including 

signaling an individual’s body size (Fitch, 1997) or individual identity (Rendall, 2003). 

The primary determinant of the resonances of vocalizations is the length of the vocal tract 

(Fant, 1960; Fitch, 1997), and this, in turn, is determined by the length of the oral cavity 
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and also the length of the pharyngeal cavity where present. Hence, an additional 

important functional factor promoting integration of laryngeal and cranial growth 

programs may be the need to maintain vocal tract length in the face of changes in cranio-

facial form occurring for other functional reasons. Put differently, without correlated 

changes in larynx position, a reduction in facial length would be associated with a 

reduction in oral cavity length and thus overall vocal tract length. And this in turn would 

disrupt co-evolved systems of vocal production and perception based on the resonant 

characteristics of vocalizations produced. Hence, to maintain the utility of Fn in the 

species’ communication system, the larynx may have descended to counterbalance the 

shortening of the snout, there-by preserving overall vocal tract length and the resonant 

frequency patterns produced. 

 Historically, the descent of the human larynx has been attributed to the production 

of language itself (the Phonetic Expansion Hypothesis: Lieberman, 1969), leading some 

researchers to argue that the position of the larynx in a fossil hominid is a good indicator 

of species’ language abilities (Lieberman, 1969). There are a number of problems with 

this hypothesis, as outlined in the Introduction. However, the results presented here add 

further doubt in as much as they demonstrate that laryngeal position may respond to other 

functional pressures completely unrelated to language. If laryngeal descent can be 

associated with non-linguistic pressures, then the position of the larynx in ancestral 

humans can no longer be taken to be an indicator of language abilities, nor can it be taken 

to point to other complex human abilities (e.g., art, music, culture) that are often thought 

to be associated with the emergence of language.  

 



 

 

60!

Ta
bl

e 
3.

1:
 L

eg
en

d 
de

ta
ili

ng
 a

ll 
m

ea
su

re
m

en
ts

 u
se

d 
an

d 
th

e 
lo

ca
tio

n 
of

 la
nd

m
ar

ks
 fo

r e
ac

h 
m

ea
su

re
m

en
t 

M
ea

su
re

m
en

t 
Lo

ca
tio

n 
(C

ha
se

 e
t a

l.,
 

20
02

) 
Se

ct
io

n 
of

 S
ku

ll 
La

nd
m

ar
k 

1 
La

nd
m

ar
k 

2 

B
ul

la
 to

 In
ci

so
r 

 
Fa

ce
 L

en
gt

h 
B

ul
la

 
U

pp
er

 In
ci

so
r 

O
cc

ip
ita

l H
ei

gh
t 

A
1 

N
eu

ro
cr

an
iu

m
 

B
ul

la
 

Pr
ot

ub
er

en
tia

 o
cc

ip
ita

lis
 e

xt
er

na
 

C
re

st
 H

ei
gh

t 
A

2 
N

eu
ro

cr
an

iu
m

 
Pr

ot
ub

er
en

tia
 

oc
ci

pi
ta

lis
 e

xt
er

na
 

Pr
oc

es
us

 te
nt

or
ic

us
 

C
re

st
 L

en
gt

h 
A

3 
N

eu
ro

cr
an

iu
m

 
Pr

ot
ub

er
en

tia
 

oc
ci

pi
ta

lis
 e

xt
er

na
 

B
re

gm
a=

 S
ut

ur
e 

lin
e 

be
tw

ee
n 

fr
on

ta
l 

an
d 

oc
ci

pa
l b

on
e 

m
ar

ki
ng

 to
p/

do
rs

al
 

m
ar

gi
n 

of
 si

nu
s 

C
ra

ni
al

 H
ei

gh
t 

A
4 

N
eu

ro
cr

an
iu

m
 

D
e 

pl
oe

 
B

ul
la

 
Sk

ul
l H

ei
gh

t 
A

5 
N

eu
ro

cr
an

iu
m

 
B

re
gm

a 
B

ul
la

 

Sk
ul

l L
en

gt
h 

A
6 

N
eu

ro
cr

an
iu

m
 a

nd
 F

ac
e 

Le
ng

th
 

Pr
ot

ub
er

en
tia

 
oc

ci
pi

ta
lis

 e
xt

er
na

 
O

ut
si

de
 ti

p 
of

 th
e 

in
ci

si
ve

 b
on

e 
(P

ro
st

hi
on

) 

N
as

io
n 

A
7 

N
eu

ro
cr

an
iu

m
 a

nd
 F

ac
e 

Le
ng

th
 a

nd
 F

ac
e 

H
ei

gh
t 

In
fe

ct
io

n 
po

in
t o

n 
sl

op
e 

of
 m

id
fa

ce
 

B
ul

la
 

In
te

rn
as

al
 

Le
ng

th
 

A
8 

B
as

ic
ra

ni
um

 a
nd

 F
ac

e 
Le

ng
th

 
R

os
tra

l e
nd

 o
f O

s 
na

sa
le

 
B

ul
la

 

Pr
os

th
io

n 
A

9 
B

as
ic

ra
ni

um
 a

nd
 F

ac
e 

Le
ng

th
 

Pr
oc

es
su

s a
lv

eo
la

ris
 

O
ut

si
de

 ti
p 

of
 th

e 
In

ci
si

ve
 B

on
e 

Zy
go

m
at

ic
.L

v 
A

10
 

B
as

ic
ra

ni
um

 a
nd

 F
ac

e 
Le

ng
th

 
B

ul
la

 
B

ac
k 

of
 1

st
 M

ol
ar

 

C
or

on
oi

d 
H

ei
gh

t 
A

11
 

Fa
ce

 H
ei

gh
t 

To
p 

co
ro

no
id

 p
ro

ce
ss

 
of

 th
e 

m
an

di
bl

e 
B

ot
to

m
 o

f m
an

di
bl

e 

M
an

di
bl

e.
Lv

 
A

12
 

Fa
ce

 L
en

gt
h 

Pr
oc

es
su

s a
ng

ul
ar

is
 

Lo
w

er
 In

ci
so

r 1
: P

ro
ce

ss
us

 a
lv

eo
la

ris
 

Si
nu

s a
nd

 O
rb

it 
A

13
 

Fa
ce

 H
ei

gh
t a

nd
 F

ac
e 

Le
ng

th
 

In
fe

rio
r O

rb
it 

Po
st

er
io

r S
in

us
 

Si
nu

s L
en

gt
h 

A
14

 
Fa

ce
 L

en
gt

h 
Fr

on
t S

in
us

 
R

ea
r S

in
us

 
Si

nu
s H

ei
gh

t 
A

15
 

Fa
ce

 H
ei

gh
t 

B
ot

to
m

 S
in

us
 

To
p 

Si
nu

s 



 

 

61!

A
ng

le
 1

 
A

16
 

Fa
ce

 H
ei

gh
t 

In
fle

ct
io

n 
po

in
t o

f t
op

 
of

 sk
ul

l/s
to

p 
 

A
ng

le
 2

 
A

17
 

Fa
ce

 H
ei

gh
t 

In
fle

ct
io

n 
po

in
t o

n 
sl

op
e 

of
 m

id
fa

ce
 

 

A
ng

le
 3

 
A

18
 

Fa
ce

 H
ei

gh
t 

Li
ne

: m
id

lin
e 

of
 o

s 
m

ax
ill

a 
Li

ne
: f

ol
lo

w
in

g 
2nd

 p
ar

t o
f A

ng
le

 2
 

ab
ov

e:
 in

fle
ct

io
n 

po
in

t o
n 

os
 fr

on
ta

lis
 

Fa
ci

al
 H

ei
gh

t 
A

19
 

Fa
ce

 H
ei

gh
t 

In
fle

ct
io

n 
po

in
t o

n 
sl

op
e 

of
 m

id
fa

ce
 

V
en

tra
l m

ax
ill

a 

Ju
gu

la
r 

C
3 

B
as

ic
ra

ni
um

 
Pr

oc
es

su
s j

ug
ul

ar
us

 
Le

ft 
Pr

oc
es

su
s j

ug
ul

ar
us

 R
ig

ht
 

M
as

to
id

 
C

4 
B

as
ic

ra
ni

um
 a

nd
 

N
eu

ro
cr

an
iu

m
 

Pr
oc

es
su

s m
as

to
id

es
 

Le
ft 

Pr
oc

es
su

s m
as

to
id

es
 R

ig
ht

 

C
ra

ni
al

 W
id

th
 

C
5 

B
as

ic
ra

ni
um

 
B

ul
la

 
B

ul
la

 

C
ra

ni
al

 L
en

gt
h 

C
6 

B
as

ic
ra

ni
um

 
V

en
tra

l m
ar

gi
n 

fo
ra

m
en

 m
ag

nu
m

 
D

or
sa

l e
nd

 o
f P

te
ry

go
ie

de
um

 

Sk
ul

l W
id

th
 

C
7 

B
as

ic
ra

ni
um

 a
nd

 F
ac

e 
W

id
th

 
N

ex
t t

o 
Pr

oc
es

s 
Zy

go
m

at
ic

us
 L

ef
t 

N
ex

t t
o 

Pr
oc

es
s Z

yg
om

at
ic

us
 R

ig
ht

 

C
or

on
oi

d 
Sp

an
 

C
8 

Fa
ce

 W
id

th
 

Le
ft 

m
an

di
bl

e 
co

ro
no

id
 p

ro
ce

ss
 

R
ig

ht
 m

an
di

bl
e 

co
ro

no
id

 p
ro

ce
ss

 

H
am

ul
us

 S
pa

n 
C

9 
B

as
ic

ra
ni

um
 a

nd
 F

ac
e 

W
id

th
 

H
am

ul
us

 
Pt

er
yg

oi
ed

eu
m

 L
ef

t 
H

am
ul

us
 P

te
ry

go
ie

de
um

 R
ig

ht
 

A
nt

er
io

r C
ra

ni
al

 
W

id
th

 
C

10
 

B
as

ic
ra

ni
um

 
C

an
al

us
 a

la
ris

 L
ef

t 
C

an
al

us
 a

la
ris

 R
ig

ht
 

Zy
go

m
at

ic
 

C
11

 
Fa

ce
 L

en
gt

h 
A

nt
er

io
r d

im
en

si
on

 o
f 

zy
go

m
at

ic
 a

rc
h 

Po
st

er
io

r d
im

en
si

on
 o

f z
yg

om
at

ic
 a

rc
h 

M
an

di
bl

e.
1.

L 
C

12
 

Fa
ce

 L
en

gt
h 

Pr
oc

es
su

s a
ng

ul
ar

is
 

Lo
w

er
 In

ci
so

r 1
: P

ro
st

hi
on

: P
ro

ce
ss

us
 

al
ve

ol
ar

is
 

Sk
ul

l B
as

e 
Le

ng
th

 
C

13
 

B
as

ic
ra

ni
um

 a
nd

 F
ac

e 
Le

ng
th

 
Po

st
er

io
r m

ar
gi

n 
of

 
m

ol
ar

s 
D

or
sa

l e
nd

 o
f P

te
ry

go
ie

de
um

 

M
an

di
bl

e 
Sp

an
 

C
14

 
Fa

ce
 W

id
th

 
Lo

w
er

 le
ft 

1st
 m

ol
ar

 
Lo

w
er

 ri
gh

t 1
st
 m

ol
ar

 



 

 

62!

Sn
ou

t 
C

16
 

Fa
ce

 W
id

th
 

Fo
ra

m
en

t 
in

fr
ao

rb
ita

le
 L

ef
t 

Fo
ra

m
en

 in
fr

ao
rb

ita
le

 R
ig

ht
 

U
pp

er
 C

an
in

e 
Sp

an
 

C
17

 
Fa

ce
 W

id
th

 
Le

ft 
up

pe
r c

an
in

e 
R

ig
ht

 U
pp

er
 C

an
in

e 

Lo
w

 C
an

in
e 

Sp
an

 
C

18
 

Fa
ce

 W
id

th
 

Le
ft 

lo
w

er
 c

an
in

e 
R

ig
ht

 lo
w

er
 c

an
in

e 

Fa
ci

al
 L

en
gt

h 
C

19
 

Fa
ce

 L
en

gt
h 

Po
st

er
io

r m
ar

gi
n 

of
 

m
ol

ar
s 

In
ci

so
rs

 

Pr
em

ax
ill

a 
C

20
 

Fa
ce

 L
en

gt
h 

Pr
os

th
io

n:
 P

ro
ce

ss
us

 
al

ve
ol

ar
is

 
Po

st
er

io
r f

is
su

re
 p

al
at

in
e 

H
um

er
us

 
 

B
od

y 
Si

ze
 

 
 

Fe
m

ur
 

 
B

od
y 

Si
ze

 
 

 



 

 63#

Table 3.2: Male and female principal components’ eigenvalues and variation accounted 
for 

Principal 
Component 

Eigenvalues Variation Accounted For (%) 
Male Female Male Female 

PC1 16.516 20.839 44.637 56.321 
PC2 3.563 3.323 9.631 8.980 
PC3 3.283 2.449 8.872 6.618 
PC4 2.472 1.573 6.682 4.251 
PC5 1.507 1.376 4.073 3.718 
PC6 1.348 1.134 3.642 3.065 
PC7 1.197  3.234  
PC8 1.007  2.722  
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Table 3.3: Principal components loadings for face and skull measures in sample of male 
PWD’s. 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 
Bulla to Incisor 0.863 0.135 0.024 -0.296 -0.021 -0.169 -0.113 -0.078 
Occipital Height 0.487 -0.417 -0.003 0.119 0.189 0.540 0.054 0.088 

Crest Height 0.801 0.019 -0.235 0.060 -0.206 0.266 -0.076 -0.045 
Crest Length 0.511 -0.011 0.341 0.437 0.127 0.180 -0.375 0.001 

Cranial Height 0.274 -0.274 0.388 0.201 0.727 -0.127 -0.049 -0.073 
Skull Height 0.708 -0.406 0.115 0.195 0.370 0.063 -0.052 -0.048 
Skull Length 0.931 0.091 0.053 -0.219 -0.087 0.047 -0.056 0.042 

Nasion 0.899 -0.153 0.008 -0.137 0.183 -0.220 0.120 -0.041 
Internasal Length 0.839 0.222 0.126 -0.297 0.000 -0.156 -0.054 -0.098 

Prosthion 0.871 0.173 0.098 -0.328 -0.034 -0.165 0.023 -0.113 
Zygomatic.Lv 0.756 0.136 0.195 -0.308 0.048 -0.292 0.170 -0.244 

Coronoid Height 0.760 0.024 0.144 -0.057 -0.215 0.308 -0.178 0.161 
Mandible.Lv 0.817 0.113 -0.090 -0.335 -0.142 -0.037 -0.140 -0.058 

Sinus and Orbit 0.703 -0.341 -0.203 -0.127 0.191 0.062 0.094 0.282 
Sinus Length 0.605 -0.528 -0.223 -0.262 0.068 -0.089 0.245 0.147 
Sinus Height 0.690 -0.316 -0.458 -0.191 -0.146 0.011 0.102 0.207 

Angle 1 -0.145 0.431 0.573 -0.313 0.129 0.124 0.205 0.359 
Angle 2 -0.211 0.540 0.516 -0.239 0.059 0.383 -0.029 -0.144 
Angle 3 0.225 -0.453 -0.555 0.399 -0.130 -0.104 -0.134 -0.274 

Facial Height 0.712 0.196 -0.257 0.094 -0.163 0.110 -0.303 0.088 
Jugular 0.729 0.242 0.046 0.123 0.264 0.015 0.027 -0.127 
Mastoid 0.817 -0.085 0.081 0.062 0.026 0.191 -0.066 -0.117 

Cranial Width 0.717 -0.160 0.162 -0.014 -0.067 0.336 0.074 0.045 
Cranial Length 0.516 -0.332 0.544 0.076 -0.061 0.020 0.173 -0.248 

Skull Width 0.874 -0.018 0.057 0.142 -0.134 0.001 -0.163 0.004 
Coronoid Span 0.769 -0.290 0.207 -0.053 -0.075 -0.016 -0.025 -0.131 
Hamulus Span 0.304 0.070 0.229 0.294 -0.356 0.197 0.661 -0.114 

Anterior Cranial 
Width 0.470 -0.562 -0.007 0.015 -0.056 -0.070 0.241 0.150 

Zygomatic 0.797 0.289 -0.242 -0.195 0.017 0.000 -0.097 -0.081 
Mandible.1.L 0.688 0.447 -0.394 0.091 0.176 0.081 0.161 -0.031 

Skull Base Length 0.874 0.286 -0.104 -0.148 0.109 0.056 0.035 0.022 
Mandible Span 0.554 0.401 0.074 0.575 -0.028 -0.074 0.184 -0.097 

Snout 0.662 0.161 0.115 0.544 -0.235 -0.154 0.065 -0.058 
Upper Canine Span 0.569 0.354 0.223 0.462 -0.086 -0.267 0.001 0.272 
Low Canine Span 0.578 0.236 0.108 0.348 0.060 -0.274 -0.039 0.473 

Facial Length 0.359 0.517 -0.668 0.087 0.240 0.089 0.158 0.060 
Premaxilla 0.295 -0.406 0.633 -0.094 -0.332 -0.191 -0.181 0.157 
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Table 3.4: Principal components loadings for face and skull measures in sample of female 
PWDs. 

Variable PC1 PC2 PC3 PC4 PC5 PC6 
Bulla to Incisor 0.888 -0.286 -0.059 0.073 -0.179 -0.105 
Occipital Height 0.565 0.547 0.210 -0.293 -0.005 -0.116 

Crest Height 0.791 0.177 -0.065 -0.140 -0.038 0.185 
Crest Length 0.588 0.170 0.347 0.273 0.374 0.442 

Cranial Height 0.468 0.281 0.484 0.105 0.447 -0.324 
Skull Height 0.781 0.341 0.253 0.111 0.225 -0.180 
Skull Length 0.949 -0.090 0.087 -0.118 -0.062 0.018 

Nasion 0.937 -0.033 0.175 -0.040 0.063 -0.167 
Internasal Length 0.919 -0.287 0.088 -0.027 -0.071 -0.112 

Prosthion 0.918 -0.271 0.042 0.003 -0.055 -0.130 
Zygomatic.Lv 0.788 -0.362 -0.017 0.015 -0.022 -0.340 

Coronoid Height 0.865 -0.003 0.024 -0.060 0.070 0.183 
Mandible.Lv 0.802 -0.336 -0.153 0.087 -0.135 -0.108 

Sinus and Orbit 0.792 0.185 0.047 -0.422 -0.120 -0.080 
Sinus Length 0.816 0.007 0.030 -0.336 -0.240 -0.189 
Sinus Height 0.776 0.336 -0.129 -0.306 -0.253 -0.062 

Angle 1 0.225 -0.583 0.507 -0.287 -0.123 0.223 
Angle 2 0.046 -0.744 0.263 0.407 0.078 -0.182 
Angle 3 -0.232 0.796 -0.326 0.022 -0.031 -0.068 

Facial Height 0.736 0.035 -0.217 -0.008 -0.085 0.250 
Jugular 0.841 -0.038 0.010 -0.087 0.140 0.110 
Mastoid 0.914 0.049 0.106 -0.056 0.012 0.016 

Cranial Width 0.874 0.144 0.126 0.205 -0.097 -0.040 
Cranial Length 0.652 0.180 0.467 0.026 0.090 0.172 

Skull Width 0.875 0.081 -0.139 0.265 0.037 -0.061 
Coronoid Span 0.781 0.214 -0.035 0.156 0.178 -0.237 
Hamulus Span 0.580 -0.054 -0.330 0.300 -0.299 -0.160 

Anterior Cranial Width 0.586 0.493 0.152 0.153 -0.126 -0.032 
Zygomatic 0.828 -0.196 0.003 -0.209 0.255 0.018 

Mandible.1.L 0.757 -0.181 -0.408 -0225 0.320 0.053 
Skull Base Length 0.939 -0.123 -0.096 -0.127 0.073 0.106 

Mandible Span 0.705 0.113 -0.406 0.260 0.036 0.016 
Snout 0.793 0.157 -0.295 0.323 0.053 0.097 

Upper Canine Span 0.810 -0.018 -0.313 0.238 -0.109 0.160 
Low Canine Span 0.829 -0.001 -0.044 0.086 -0.144 0.300 

Facial Length 0.402 -0.350 -0.542 -0.230 0.434 0.087 
Premaxilla 0.594 0.035 0.432 0.207 -0.417 0.227 
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Figure 3.1. Radiograph of head and neck region of Portuguese Water Dog that illustrates 
the landmarks and measurements used to evaluate laryngeal descent. The first step was to 
identify the posterior margin of the larynx, which is coincident with the top of the trachea 
(point A). Next, a line was drawn through the vertebral column to delineate spinal angle 
(line B). A line was then drawn from the posterior margin of the larynx (point A) to meet 
line B at a perpendicular angle (line C). The degree of larynx descent is represented by 

where these two lines meet relative to the position of the third vertebral body. To quantify 
this position, a line was drawn along the extent of the third vertebral body to establish its 
length (line D). Then another line was drawn (line E) representing the distance from the 
anterior margin of the third vertebral body to line A. The length of line E relative to line 
A represents the proportional descent of the larynx with respective to the third vertebrae. 

The degree of head flexion or extension was established by computing the difference 
between spinal angle (line B) and snout angle (line F). 
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a)  b)  

c)   
Figure 3.2. Radiograph images of Portuguese Water Dogs illustrating variation in the 

degree of head extension and flexion quantified as the angle of deviation from the spinal 
axis. A) 164°; B) 128°; C) 87°. 
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Figure 3.3. Head position plotted against absolute values of laryngeal position.   



 

 69#

 
Figure 3.4. Graph showing the strong correlation between PC1 (summarizing variation in 
skull and facial variables) and body size (represented by humerus length) in both males 

and females. 
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Figure 3.5. Graph showing the relationship between laryngeal position (after correcting 

for variable head extension or flexion) and PC4 in male PWD’s. 
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Figure 3.6. Lateral and dorsal radiograph images of male PWD skull highlighting skull 
and face variables varying significantly with laryngeal position. Solid lines and dotted 

lines indicate variables with opposing influences.   
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Figure 3.7. Graph showing the relationship between laryngeal position (after correcting 

for variable head extension or flexion) and PC6 in female PWDs. 
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Figure 3.8. Lateral and dorsal radiograph images of female PWD skull highlighting skull 

and face variables varying significantly with laryngeal position. Solid lines and dotted 
lines indicate variables with opposing influences.   
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Chapter 4 

Discussion 

4.1 Overview 

 The goal of this thesis was to evaluate two independent theoretical explanations 

for the descent of the larynx found in humans. This was accomplished by analyzing the 

possible relationship between vocal tract length and body size (Chapter 2), as well as the 

possible relationship between laryngeal descent and cranio-facial form (Chapter 3), in 

two separate and unique radiographic Canid samples, the Portuguese Water Dog (PWD) 

and the Russian Silver Fox. PWDs were decimated in World War II and their recovery 

since that time has become the focus of study for the Georgie Project, a unique genetic 

and phenotypic cross-generational research program. Russian Silver Foxes were 

originally utilized by Dmitry Belyaev to investigate a possible route of domestication by 

tracking changes in the animal’s aggression and fear towards humans. Through these two 

research programs, a large amount of information has been collected, including detailed 

radiographic images, making them especially suitable subjects for the current work. 

4.1.1 Vocal Tract Length and Body Size 

 The first original research presented here describes the relationship between vocal 

tract length (VTL) and body size in PWDs and Silver Foxes. To move away from using 

weight as a definitive indicator of body size, femur and humerus length were combined 

via multiple regression analyses to represent body size. In both species, overall VTL was 
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related to overall body size when species and sexes were analyzed separately. Whereas 

many previous studies have been limited to analyzing overall VTL, the current work 

involved subdividing the vocal tract into its constituent oral and pharyngeal cavities. The 

oral cavity was consistently related to body size in both species and both sexes, which is 

likely because the growth of the bony anatomy of the face is correlated with the growth 

of other bony structures, such as femur and humerus length. However, the pharyngeal 

cavity showed weaker and inconsistent relationships with body size. This outcome may 

reflect the fact that the pharyngeal cavity length is defined by the position of the larynx, 

which is determined by ligamentous connections of the hyoid skeleton to the skull base 

and mandible rather than by bone-bone connections. Hence, laryngeal position – and thus 

pharyngeal cavity size – may be emancipated to some extent from the bony constraints 

that control the size of the oral cavity.  

 These VTL and body size results support two aspects of Fitch’s (1997) Body Size 

Exaggeration Hypothesis, namely that Fn may be related to body size but also be subject 

to manipulation in ways that exaggerate size via alterations of layrnx position and thus 

pharyngeal cavity length. Therefore, it is not only possible that the honesty of an animal’s 

vocalization can be situation dependent via movement of the larynx, but it is also possible 

that animals may present both honest and dishonest information in a single vocalization.  

 Aspects of a vocalization that are derived from the oral component of the vocal 

tract can be seen as being relatively honest signals while aspects of a vocalization that are 

derived from the pharyngeal component of the vocal tract may be dishonest as they are 

more likely to be independent of body size. Similar effects have been observed in human 

speech, where the oral and pharyngeal cavities contribute differentially to vowel and 
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phoneme quality (Fant, 1960). But this complicated relationship between vocal tract 

cavities and Fn has not been well explored in non-human animals. 

4.1.2 Laryngeal Descent and Cranio-Facial Structure 

 The second original research presented here discusses an alternative to the 

traditional explanation for laryngeal descent in human ancestors, the Phonetic Expansion 

Hypothesis. Traditionally, incrementally increasing phonetic abilities have been 

considered the primary driver behind laryngeal descent. But some current research has 

shown that the initial descent of the larynx may not have increased the individual’s 

phonetic abilities (Boe et al., 2007). The current research shows that the facial 

morphological alterations that occurred over the course of human evolution may have 

driven, at least initially, the descent of the larynx. In the current sample of PWDs, the 

descent of the larynx in male dogs was related to skull Principal Component 4 (PC4). 

 PC4 in males is characterized as a facial length-width trade-off where the face 

gets narrower as it is drawn forward and becomes longer; likewise, the face becomes 

wider as it shortens. The degree of laryngeal descent was positively associated with facial 

shortening and widening. These alterations in facial shape mirror what occurred over the 

course of human evolution since splitting with the great apes. Compared to our last 

common ancestor, modern human facial form has become flatter and wider. If a similar 

effect to that observed in the male PWDs operated on ancestral humans, the descent of 

the larynx can be explained, at least partially, by this facial flattening process.  

4.2 Potential Shortcomings 

4.2.1 Vocal Tract Length and Body Size 
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 The current work improves on previous research in several ways but there remain 

potential shortcomings to address in the future. For example, the finding that vocal tract 

length correlates well with body size in radiographic images of anaesthetized canids may 

exaggerate the relationship that holds in awake and active in individuals. As confirmed 

here, the larynx is not in a fixed position and the angle of the head, which can change 

during vocalization in many species, can influence laryngeal position. Using a small 

sample of three dogs, Fitch (2000b) found that both head and larynx position change 

during vocalization. At the same time, additional analyses undertaken here show that this 

confound can be addressed in future work by using the residuals from a regression of 

larynx position on variable head flexion/extension, instead of the absolute measures of 

larynx position from radiogoraphic images. 

 However, it is also possible that animals may be able to voluntarily alter the 

position of their larynx without altering head position. People are able to do this when 

they speak by deliberately raising or lowering their larynx while voicing. Similar 

dynamic alterations to larynx position in vocalizing animals might upset the correlations 

between overall vocal tract length and body size established here from radiographic 

images of sedated individuals. Under normal circumstances, animals may also be able to 

manipulate other aspects of vocal anatomy (e.g., tongue and lips) to alter vocal tract 

length.  

 Notwithstanding these issues, the current work is the first of its kind to perform an 

in-depth analysis of the relationship between body size and not only overall VTL but also 

the length of its constituent oral and pharyngeal components in a large and well-balanced 

sample.  
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 A further potential caveat concerns the traditional assumption that the resonance 

pattern of vocalizations is determined primarily by the length of the vocal tract through 

which the sounds propagate. Recently, it has come to light that this view may be too 

simple; there may be other influences on the Fn of voiced sounds beyond the linear length 

of the tube. For example, in Koalas, the measured Fn of some vocalizations point to a 

corresponding vocal tract length that exceeds the entire length of the animal’s body, 

which is obviously physically impossible (Charlton et al., 2011). This outcome points to 

there being additional factors beyond simply vocal tract length that affect the Fn of the 

vocalizations produced. 

 One possibility is that resonance patterns might also depend, in part, on the cross 

sectional area (diameter) of the vocal tract tube. One might expect vocal tract length and 

width to covary linearly such that the issue becomes moot. But this might not always be 

the case. There may be instances where certain individuals have comparatively wide or 

comparatively narrow vocal tracts with corresponding differences in resonance patterns 

quite independently of any differences in vocal tract length. 

 A related concern is that vocal tracts often involve more complex configurations 

and side-branches than the traditional ‘simple tube’ model generally allows for. For 

example, in language, most phonemes involve articulations of the tongue, jaw, and lips in 

ways that distort the vocal tract from its neutral (unarticulated) configuration and thereby 

dramatically alter the Fn profiles of the sounds produced. Further, some phonemes, such 

as the nasalized consonants “m” and “n”, involve coupling of the nasal cavities with the 

oral cavities, significantly altering effective vocal tract dimensions and thus the Fn 

patterns of the sounds produced (Lieberman, 1993). Although poorly studied, animal 
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sounds may involve some similar articulations that alter the vocal tract configuration and 

thus its resonant properties (Fox & Cohen, 1977; Riede, Bronson, Hatzikirou, & 

Zuberbuhler, 2005; Sanvito et al., 2007). In short, the traditional model of the vocal tract 

as a simple tube open at one end is perhaps too simplistic. 

4.2.2 Laryngeal Descent and Cranio-Facial Form 

 A potential shortcoming of the finding that larygeal position was affected by 

variable cranio-facial size and shape in PWD’s is that the magnitude of the effect was 

relatively small (i.e., the degree of variation in laryngeal position was not dramatic). 

However, on theoretical grounds, the effect does not need to be very large in order for it 

to be significant in evolutionary terms, particularly if it is subject to continuing selection 

over many generations. In such circumstances, small incremental changes can accumulate 

and ultimately produce more dramatic modifications.  

 A second potential criticism of the laryngeal descent results is that the analysis 

assumes that changes in larynx position will be permanent and that, therefore, laryngeal 

descent can be seen in the resting position of the larynx. In humans, the majority of 

laryngeal descent seems to be permanent with a low resting position creating a large 

pharyngeal cavity and the larynx able to retract even deeper when required for speech. 

But, as evidenced by other animals, it is possible for the majority of laryngeal descent to 

be non-permanent. 

 In the classic example of European Red Deer, the larynx is permanently 

descended a short amount but the great majority of the descent occurs when the animal 

vocalizes and pulls its larynx down to the sternum (Fitch & Reby, 2001). It is possible 

that the weak effect of cranio-facial form on larynx position may be due to the levels of 
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laryngeal descent in the sample not being fully identifiable because the animals rely on 

the temporary lowering of their larynx when they vocalize in contrast to the permanent 

descent of the larynx found in humans. An animal could potentially pay less of the 

associated costs of a descended larynx by relying on the temporary descent of the larynx.  

4.3 Future Directions 

 There are ways to improve upon this research in the future that can counter the 

potential problems presented above. First, one natural extension of the current research 

would be to study the relationship between VTL and body size in active and vocalizing 

animals, there-by addressing the possibility of additional dynamic laryngeal descent that 

might further confirm or contradict the honest signaling relationships identified here.  At 

the same time, this research should incorporate other dimensions of the vocal tract to 

better establish whether body-size related resonance patterns are well modeled by a vocal 

tract model based on a simple tube, or whether they are also influenced by other features, 

such as the width of the vocal tract or the coupling of the vocal tract with side branches 

such as the nasal cavity.  

 Arguably, the most exciting component of this work has been the identification of 

a relationship between facial shape and laryngeal position in dogs with provocative 

implications for the course of laryngeal descent in humans and its relevance to language 

evolution. At the moment, these results are limited to the domestic dog, but if alternative 

species show similar correlated laryngeal descent with the shortening of the facial 

structure, the current findings can be considered even more applicable to human 

evolution as an alternative to the Phonetic Expansion Hypothesis. Hence, an obvious 

extension of the work would involve testing a much wider variety of species similarly 
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characterized by variable facial and skull morphologies to test the generality of the 

findings reported here for dogs. Repeated instances of laryngeal descent in response to 

modified cranio-facial form would certainly buttress the suggestion that the specific 

instance of laryngeal descent in humans is not unique nor then likely uniquely connected 

to the emergence of language.  

 One potential obstacle to this kind of work in other species is the availability of 

detailed measurements of a large number of cranio-facial dimensions. Such detailed 

measures were available for the PWD sample used here (Chase et al., 2002) and were 

likely critical to detecting the relatively small differences involved. Without such refined 

measures, the documented patterns of cranio-facial variation might be too coarse to 

reveal effects of the sort identified here.  

Overall, the current research provides support for the hypothesized relationship 

between body size and vocal tract length. Further, it provided support for a hypothesized 

relationship between cranio-facial structure (specifically facial length/width) and 

laryngeal descent. In the process, the work has also shown the value of using 

radiographic images and canine samples, which are widely available, to address a variety 

of important questions in comparative and evolutionary anatomy. Such materials should 

be considered for future research on other topics. 
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